20.109 Module 2

Modeling exercise:  Making calcium measurements in a model cell

I.  Introduction

In this exercise, you will study concentration and binding dynamics of calcium in a simplified model of a cell.  The exercise will be performed in Matlab, using a macro (“m-file” in Matlab terminology) called Ca_kinetics.m.  To run the model, you will start Matlab on your computer.  When the program opens, you will see a window titled “MATLAB” that looks like this:
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The “>>” symbol is the command line prompt.  Type “edit Ca_kinetics” at this prompt to open the modeling m-file in the default text editor.  You should be able to scroll through the m-file to examine it.  Do not edit it in any way yet.  At the top of the editor window is a symbol:
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Clicking this symbol saves and runs the m-file; click it now.  You now should see a new window titled “Figure 1,” that looks like this:
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You can use the magnifying glass tools on the toolbar at the top to zoom in and out on either of the two plots.  Double clicking with either one resets the plot.  You can also type “grid on” at the command line to display grid lines on either subplot; select the subplot you want to do this in using the arrow tool in the figure toolbar.

II.  Description of the model
The m-file we are using implements a so-called “single compartment” model of a cell undergoing calcium fluctuations; in other words, the cell is assumed to be a single, homogenous container of reagents with no spatial variation of calcium or calcium-binding molecules.  The cell is assumed to have a basal or resting calcium concentration, [Ca2+]rest.  Additional calcium enters the cell in pulses called “transients,” each of which corresponds to injection of a fixed concentration of calcium ([Ca2+]T) at an instant in time.  When calcium enters the cell, some is bound by endogenous proteins (approximated as a single species, S, with total concentration [S]T and dissociation constant KS); some is bound by exogenous fluorescent indicator (B, with total concentration [B]T dissociation constant KB); and some remains free ([Ca2+]free).  Calcium is distributed to each of these three pools such that: 
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S and B are referred to as the “calcium binding ratios” for S and B, respectively.  In reality, both S and B are calcium-dependent variables, but for purposes of our simplified model, we will approximate them as constants equal to their values at the cell’s resting calcium level.  The dynamics of the system are then governed by the following equation:
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This equation simply states that the change in calcium at any time (left side) is equal to the pulsed increase in calcium at times tp (right side, first term) minus the extrusion of calcium with rate constant  (right side, second term), where [Ca2+]free = [Ca2+]free – [Ca2+]rest.  Because Eq. [3] is a linear first-order differential equation, it can be solved analytically to derive expressions for the amplitude (A) and decay time constant () of the spikes and subsequent exponential decreases in free and bound calcium caused by each injection.  These are given by:
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The model we are working with determines A and  directly, using Eqs. [4] & [5] and the parameters you give it, so you don’t need to solve for anything yourself.  Using these quantities, the model then computes dynamics for a user-defined sequence of Np calcium input pulses with interpulse interval tp, with the first pulse occuring at t = tp and the last pulse occurring at t = Nptp.  The full text of the m-file is given at the end of this handout.  Two additional model parameters are T, the total length of the simulation, and dt, the “time step” used in calculating dynamics.  The time step is necessary because the model really calculates a discrete approximation to continuous dynamics.  A smaller dt will lead to a finer approximation.

The next section poses some questions you will answer as part of the exercise.  Most of the questions will require you to run the m-file after resetting some of the parameters in lines 4-20 of the m-file.  Each time you run the m-file, you will generate a new figure showing the trajectory of free calcium concentration (blue, top plot), and the fractional saturation of the calcium indicator (red, bottom plot).  If you were doing actual fluorescence experiments, the signal changes you would be recording would be proportional to the fractional saturation of the indicator.  In addition to learning about the calcium dynamics by reading the plots, you can learn the calculated values of each model parameter by typing the corresponding variable name at the Matlab command line:

	parameter
	Matlab name
	
	parameter
	Matlab name

	[Ca2+]rest
	Ca_rest
	
	[S]T
	S_T

	[Ca2+]free
	Ca_free
	
	KS
	K_S

	[Ca2+]T
	delta_Ca
	
	S
	kappa_S

	Np
	N_p
	
	[B]T
	B_T

	tp
	delta_t_p
	
	KB
	K_B

	A
	A
	
	B
	kappa_B

	
	tau
	
	
	gamma


III.  Questions
1.  Summation of calcium transients.  Modify the default m-file to simulate the effect of 100 pulses, rather than just a single pulse.  Also change the simulation length (T) to 10 seconds.  By reading values off the Matlab-generated plot, determine the mean plateau calcium concentration (call it [Ca2+]plateau) observed after the cell reaches stead-state dynamics?  With the default setting of tp = 0.2 s, the model simulates calcium pulses at a frequency (f) of 5 Hz.  Plot [Ca2+]plateau vs. pulse frequency (i.e. 1/tp) for tp = 0.1, 0.2, 0.3, and 0.4 s to show that [Ca2+]plateau = Af + [Ca2+]rest.  Why don’t A and  depend on f?

2.  Dependence of dynamics on [B]T and KB.  Return the m-file to the default settings.  Without changing any of the other parameters, run the simulation with the following combinations of [B]T and KB:  

	[B]T (µM)
	KB (µM)

	1
	0.1

	10
	0.1

	100
	0.1

	1000
	0.1

	100
	0.01

	100
	1

	
	10


Make a table showing values of A, , B, the maximum change in calcium indicator saturation (smax), and the resting saturation level (srest), produced by each combination of [B]T and KB.  Which of these conditions results in the greatest relative fluorescence change (smax/srest)?  Which results in the largest absolute fluorescence change?  Consider  as a function of KB for all the conditions where [B]T = 100 µM; note that smax is greatest when KB = [Ca2+]rest, and explain why indicators with significantly higher or lower values of KB would experience smaller changes in saturation.  For “fast” detection of calcium transients (i.e., with minimum ), why is it better to use a low affinity dye than a high affinity dye?  Add a column to your table, showing A times  for each condition.  What do the values for A tell you about the dependence of [Ca2+]plateau on [B]T and KB?  

3.  Graphical determination of S and .  Beginning from equation [5] above, derive an expression for  in terms of B.  With reference to this expression, use the data points you calculated in question 2 to demonstrate how values for S and  can be determined from a plot of  vs. B.

4.  Limits of discrete simulation.  The simulations you have been running have all used a discrete time step (dt) of one millisecond to approximate the dynamics of a continuously varying system.  Starting from the default parameters, set the number of calcium pulses Np to 100 and the simulation length to 10 s.  Run the simulation with time steps of 3 ms, 10 ms, 30 ms, 100 ms, and 300 ms, and make a table showing [Ca2+]plateau, as well as the maximum value of [Ca2+]free, for each dt.  Note that at high values of dt, the calculated [Ca2+]plateau differs from the predicted values you determined in question 1.  Now change [B]T to 10 µM and repeat the process, adding the new values of [Ca2+]plateau to your table.  Considering the values of  and tp relevant to each of the simulations your performed, suggest and justify general criteria for choosing dt relative to  and tp, such that the dynamics of the system will be well modeled by the simulation.

5.  Validity of model assumptions.  A key assumption of the model we are implementing is that values of S and B are determined by [Ca2+]rest, but do not otherwise depend on calcium concentration.  According to this assumption, the change in [BCa] due to a single calcium transient should be approximately B[Ca2+]free.  An exact equation relating [BCa] to [Ca2+]free may also be derived using [B]T and KB:
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In fact, it is this relationship that is used to compute the instantaneous values of fractional saturation ([BCa]/[B]T) reported by the simulation we are running.  By comparing the changes in [BCa] predicted by the assumption of fixed binding fraction with values of [BCa] calculated using [B]T and KB, we can test the validity of the assumption.  Return the simulation parameters to their defaults and run the simulation with [Ca2+]T set to 1 µM, 10 µM and 100 µM.  Use the simulation output to determine the change in [BCa] predicted using binding fractions and using KB.  Explain why the binding fraction estimate is worse for higher values of [Ca2+]T.  What does this say about the model’s estimates of [Ca2+]free (also calculated using binding fractions)?  What condition on [Ca2+] must be satisfied in order for the model to be effective at making predictions using binding fractions?  

clear;

% parameters governing steady state Ca2+

   Ca_rest                 =      0.1;       % resting Ca2+ concentration (uM)

   S_T                     =    100.0;       % endogenous buffer conc. (uM)

   K_S                     =      1.0;       % endogenous buffer Kd (uM)

   gamma                   =   1000.0;       % Ca2+ extrusion rate (s^-1)

% calcium transient parameters

   delta_Ca                =       20;       % Ca2+ concentration jump (uM)

   N_p                     =        1;       % number of transients

   delta_t_p               =      0.2;       % spacing between transients (s)

% parameters related to Ca2+ indicator

   B_T                     =      100;       % indicator concentration (uM)

   K_B                     =      0.1;       % indicator Kd (uM)

% parameters of the simulation

   T                       =        2;       % simulation length (s)

   dt                      =  0.00001;       % time step (s)

% **********************

% * BEGIN CALCULATIONS *

% **********************

% determine calcium transient parameters

   kappa_S      = S_T*K_S/(Ca_rest + K_S)^2;

   kappa_B      = B_T*K_B/(Ca_rest + K_B)^2;

   A            = delta_Ca/(1 + kappa_S + kappa_B);

   tau          = (1 + kappa_S + kappa_B)/gamma;

% setup calcium transients

   time         = dt:dt:T;

   Nt           = length(time);

   Ca_input     = zeros(1,Nt);

   for n = 1:N_p

      Ca_input(round(n*delta_t_p/dt)) = 1;

   end;

% calculate calcium timecourses

   Ca_excess    = zeros(1,Nt);

   Ca_excess(1) = Ca_excess(1) + Ca_input(1)*A;

   for n = 2:Nt

      Ca_excess(n)  = Ca_excess(n-1)*exp(-dt/tau) + Ca_input(n)*A;

   end;

   Ca_free      = Ca_excess + Ca_rest;

   Ca_B         = B_T*Ca_free./(K_B + Ca_free);

   B_saturation = Ca_B/B_T;

% plot output

   figure;

   subplot(2,1,1);

   plot(time,Ca_free,'b');

   title('free calcium concentration');

   ylabel('[Ca2+] (uM)');

   xlabel('time (s)');

   subplot(2,1,2);

   plot(time,B_saturation,'r');

   title('fractional saturation of the indicator');

   ylabel('fraction saturated');

   xlabel('time (s)');
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