Proteomics Approaches in Applied
microbiology

Hundreds of microbes have been

sequenced

* These sequences encode many valuable
biological phenomena

— Global elemental cycling

— Novel pathways to convert cellulose to simple sugars
— Novel pathways to convert sugars to bio-fuels

— Pathways to degrade pesticides

— Create engineered plants

— Antibiotic resistance

. etc http://genome.jgi-psf.org/mic_home.html

Mattozzi, M., et al. 2006. Appl. Environ. Microbiol. 72:6699-6706.
Dien, B. S., et al. 2003. Appl Microbiol Biotechnol 63:258-66.
Demain, A. L., ey al. 2005. Microbiol Mol Biol Rev 69:124-54




Other reasons to study microbial
physiology.

Biofouling

Activation of toxic metals
Pathogenesis

Virulence and crop disease

Heavy Metal Waste

» Radioactive and heavy metal waste is a
problem

— Expected cleanup costs in US alone total $300
billion with current techniques

— Metal reducing bacteria can precipitate heavy
metals, and thus halt their movement through
the environment. Therefore, bioremediation is
of interest.

» Desulfovibrio vulgaris has the ability to
reduce several heavy metals including
uranium, chromium, and iron.

Wall, J. D., and L. R. Krumholz. 2006. Annu Rev Microbiol 60:149-66.




Desulfovibrio vulgaris
Hildenborough

» Sulfate reducing bacterium

» Anaerobic organism

« Genome sequence available

Goal:

Develop better cellular models to
understand bioremediation potential

Transfer of Cellular
Information

Metabolites .
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A high throughput method to
analyze proteins

In 2002 John Fenn and Koichi Tanaka won
the Nobel prize.

for their development of soft desorption
lonisation methods for mass spectrometric
analyses of biological macromolecules”

Today almost all proteomics tools rely on mass spectrometry




Mass Spectrometry
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Mass analyzers separate ions based on their

mass-to-charge ratio (m/z)

® Operate under high vacuum (keeps ions from bumping

into gas molecules)

® Actually measure mass-to-charge ratio of ions (m/z)

® Key specifications are resolution, mass measurement

accuracy, and sensitivity.

® Several kinds exist: for bioanalysis, quadrupole, time-of-
flight and ion traps are most used.

Peptide parent ions can be fragmented for
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MS/MS data

Peptides produce unique ion
series that can be matched to
theoretically predicted ion
series for a given sequence

Peptide sequences
are used for protein
identification.
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Not All Proteins Are Created Equal
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2-D Liquid Chromatography
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Fields, S. 2001. PROTEOMICS: Proteomics in Genomeland Science 291:1221-1224.




Proteomics

» Most high throughput proteomics requires
availability of a genome sequence

» Predicted list of proteins and corresponding
amino acid sequences are used to create
theoretical databases which are used to
analyze MS and MSMS spectra

 However, de-novo sequencing of MS data
can allow identification of proteins from un-
sequenced bacteria.
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Artemisia annua
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Optimizing the bottom part of the
mevalonate pathway

(\E\VARSS @ atoB ) HMGS JtHVIGR e

P
Acetyl-CoA

Mevalonate

s pmmpah - amp=

Mevalonate

FPP

Martin, V.J., Pitera, D.J., et al, 2003.. Nat. Biotechnol. 21, 796-802
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ITRAQ Peptide Labeling Strategy
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Nitrate Exposure
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Model for NaCl Stress
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Summary

» Proteomics is an important component of
cellular study

» Relative quantification of proteins
increases our understanding of cellular
pathways

« Understanding cellular pathways enables
better cellular engineering

Transfer of Cellular Information
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Salt stress in D. vulgaris
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Summary

* Cell wide studies are required to observe
non-obvious effects on pathways distant
from the engineered system/ stress.

* Integration across multiple experiments is
required to develop testable hypothesis
* Cell wide studies at various levels
» Comparative analysis of multiple stress

» Omics studies provide the starting point
for further analysis.
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