%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Run Display version 3 % % Anita and Piotr % % 24th August 2010 % % Program simulating cleaving of peptide by TEV protease. % % Volume around the cell is calculated using CFU results % % from Imperial iGEM 2008. Negelcts transient diffusion % % because presence other cells is taken into consideration. % % The average resulting diffusive flux is zero. % % Assumptions: % -addition of TEV to solution is done within minutes after % % setting the concentration of cells in water to 5e8 CFU/ml % % so the cells will not divide a lot by the time TEV is added% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Calculate Diffusion coeffiecient n=0.0008909; % viscosity coefficient for H20 in 27C (from H&M notes) k_b=1.38065e-23;% [J/K] Boltzmann constant T=310; % 37C in Kalvin r=0.000000005; % [m] average protein radius having 360 residues (E.Coli Statistics) D=((T*k_b)/(6*pi*n*r)); % Deduced diff. coeff. is twice as big as the smallest in the paper D=1e-10 % [m^2/s] http://www.life.illinois.edu/crofts/bioph354/diffusion1.html %D=1.07e-10; % [m^2/s] average foragarose gel from literature for pH 5.6 [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4B3MXDC-2&_user=217827&_coverDate=07%2F01%2F2004&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1448514265&_rerunOrigin=google&_acct=C000011279&_version=1&_urlVersion=0&_userid=217827&md5=72717f9adb05920bdeb57c11f0d0c6a9&searchtype=a#toc9] %% Calculate the outer volume using Fick's first law x= 1.259921e-5; % [m] Diffusion distance determined from CFU/ml value diff_time=(x^2)/(2*D) %[s] Diffusion time %% Control volume -> delta_V V=x^3 %[m^3] - Volume around the cell v=2.794e-18; % [m^3] - volume of bacterium delta_V=V-v % [m^3] - control volume %% Initial conditions and constants global factor global s_prot global deg_c factor=v/delta_V % unitless s_prot = 4.13e-8; % production rate of protein to be displayed deg_c = 0.000289; %common degradation constant due to cell division %% Run the loading of the cell depending on production and degradation rate t=0:10:25000; [t,protein] = ode45(@protein_display,t, 0); protein_max=max(protein) %The 'protein' variable is already adjusted by the factor % in the protein_display m file %% Run the ODE t0=0; tf=3000; c_enz= 4e-6; % concentration of enzyme cleaving protein options = odeset('NonNegative',[1 1 1 1],'RelTol',1e-12); [time,p] = ode15s(@display_3, [t0 tf], [c_enz protein_max 0 0], options); figure subplot(2,2,1), plot(time,p(:,1)) title('Production of TEV') xlabel('time [s]') ylabel('concentration [mol*dm^-3]') subplot(2,2,2), plot(time,p(:,2)) title('Production of display protein') xlabel('time [s]') ylabel('concentration [mol*dm^-3]') subplot(2,2,3), plot(time,p(:,3)) title('Production of TEV-display protein') xlabel('time [s]') ylabel('concentration [mol*dm^-3]') subplot(2,2,4), plot(time,p(:,4)) title('Production of AIP') xlabel('time [s]') ylabel('concentration [mol*dm^-3]') % Drawing receptor activation threshold line hold on thres=zeros(numel(time),1); thres(:,1)=4.4658e-9; plot(time,thres,'r') %Plot the threshold value hold off