Metabolic Engineering

Jay Keasling

What is metabolic engineering (ME)?

- Metabolic engineering is a redirection of enzymatically-catalyzed reactions for the production of a new compound or the degradation of a compound
 - genetic modification of a single organism
 - engineering a consortium of organisms

Why do metabolic engineering?

- Introduction of new chemistries into the cell
- Production of novel compounds
 - new biopolymers
 - antibiotics
- Production of existing compounds in better ways
- Bioremediation of recalcitrant compounds
 - pesticides/nerve agents
 - PCBs

ME is not new

- Metabolic engineering started many decades ago with production of
 - Amino acids
 - Vitamins
 - Solvents
 - Antibiotics
- ME was done by chemical mutagenesis and selection techniques

Recombinant DNA and ME

- The advent of recombinant DNA opened a whole new dimension
- Precise manipulation of specific enzymatic reactions
- Directed pathway modification

ME is like other fields of engineering

- Synthesis
 - expression of new genes in various host cells
 - amplification of endogenous enzymes
 - Deletion of genes
- Analysis
 - Identification of important parameters that affect physiology
 - Elucidation of control architecture of a network
 - Biochemical impact of genetic and enzymatic manipulations

More synthesis in ME

- Focus on integrated metabolic pathways, not single genes
- Examination of complete biochemical reaction networks
- Pathway synthesis and thermodynamics feasibility
- Metabolic network is central

ME is interdisciplinary

- Biochemistry
- Genetics and molecular biology
- Chemistry
- Chemical engineering

Metabolic pathway

 A metabolic pathway is any sequence of feasible and observable biochemical reaction steps connecting a specified set of input and output metabolites

Metabolic fluxes

- Metabolic flux is defined as the rate at which input metabolites are processed to form output metabolites
- The determination of fluxes in vivo has been termed metabolic flux analysis (MFA).

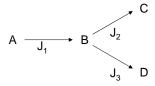
Flux is a fundamental determinant of cell physiology

- Along with intracellular metabolite concentrations, fluxes define a minimum set of information needed to describe metabolism and cell physiology
- Fluxes determine the degree of engagement of various enzymes in a conversion process
- Fluxes are necessary to elucidate metabolic flux control
- Fluxes are also useful for
 - Calculating theoretical yields
 - Determining non-measured metabolic rates
 - Observing pathway function in vivo

Metabolic fluxes

- Metabolic engineering focuses on controlling metabolic fluxes
- The combination of analytical methods to quantify fluxes and their control with molecular biological techniques to implement suggested genetic modifications is the essence of metabolic engineering.

Flux


- Flux is a fundamental determinant of cell physiology and the most critical parameter of a metabolic pathway
- For the following pathway

$$A \xrightarrow{V_1} \xrightarrow{V_2} \xrightarrow{V_3} \xrightarrow{V_4} \xrightarrow{V_5} B$$

 its flux is equal to the rates of the individual reactions at steady state

Flux (continued)

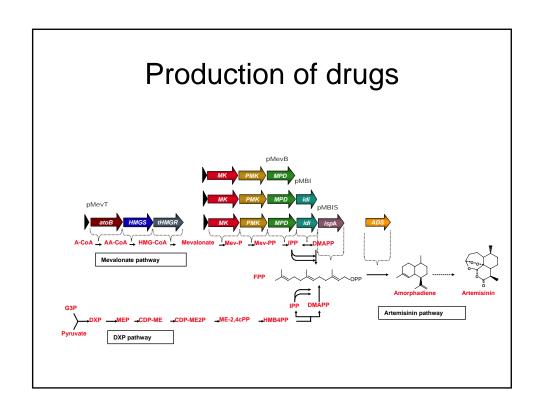
- During a transient, the individual reaction rates are not equal and pathway flux is variable
- For the branched reaction:

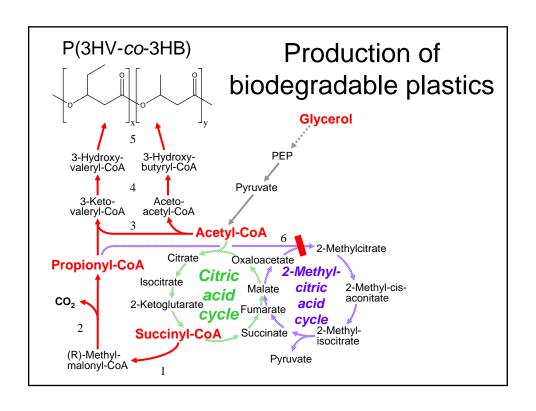
• We have two additional fluxes: $J_1 = J_2 + J_3$

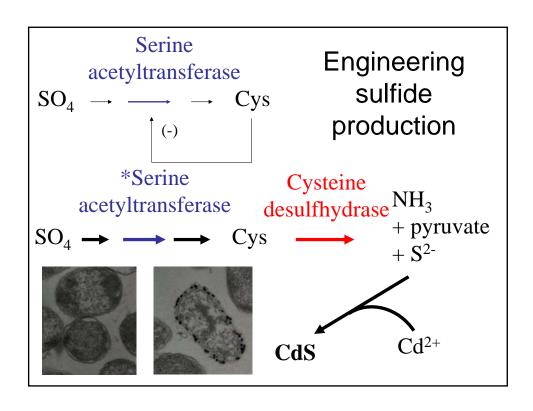
Investigating fluxes and their control

- Develop the means to observe as many pathways as possible and measure their fluxes.
- 2. Introduce well defined perturbations to the bioreaction network and determine fluxes after the system relaxes to steady state.
- 3. Analysis of perturbation results.

Research Goals


- To develop methods for in vivo flux determination
 - Fundamental determinant of cell physiology
 - Critical for understanding the control of flux
 - Uncorrelated to activity assays
- To understand the response of metabolic networks
 - Flux distributions at branch points
 - Amplification of flux through metabolic networks
- System: steady-state chemostat.
 Measurements include metabolic rates, ¹³C label enrichment in metabolites, etc.


Metabolic control analysis


- MCA = metabolic control analysis
- Developed in 1970's for the quantitative representation of the degree of flux control exercised by the pathway enzymatic activities, metabolites, effectors, and other parameters.

Applications of ME

- Improve product yield and productivity
- Extend range of substrate utilization
- Produce new (to the cell) or novel products
- Improve general cellular properties
- Manufacture of chiral compounds
- Metabolism of whole organs and tissues

