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Taxol is extracted from the Pacific Yew
•The Pacific yew tree is an 
environmentally protected 
species and one of the 
slowest growing trees in 
the world. 

•Isolation of the compound, 
which is contained in the 
bark, involves killing the 
tree. 

•One 100-year old tree 
results in approximately 
350 mg of taxol, just 
enough for one dose for a 
single cancer patient.

Total synthesis 
of taxol
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Metabolic engineering: 
introducing new 
pathways in cells

Synthesis of complex molecules

• May require several enzymes from one or more 
organisms

• Expression of genes must be balanced
– Underexpression of any one gene may limit flux 

through the pathway and therefore product yields
– Overexpression will lead to inefficiencies

• Precursors (from inside the cell or supplied from 
outside the cell) should not severely limit 
production of the desired product



4

Balancing enzymatic reactions 
in the cell

C
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B
X Y1 Z

Enzyme 1 Enzyme 3

Enzyme 2

Enzyme 4

Y2

Over-produced enzyme

Under-produced enzyme

What is metabolic engineering?
• Metabolic engineering is a redirection of 

enzymatically-catalyzed reactions for the 
production of a new compound or the 
degradation of a compound

– genetic modification of a single organism

– engineering a consortium of organisms
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Why do metabolic engineering?
• Production of novel compounds

– new biopolymers
– antibiotics

• Production of existing compounds in better 
ways

• Bioremediation of recalcitrant compounds
– pesticides/nerve agents
– PCBs
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OPO(OH)OP(OH)2O

Geranylgeranyl  diphosphate (GGPP)

Terpene metabolic 
pathways
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In bacteria, IPP is produced via 
the non-mevalonate pathway
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Metabolic engineering 
of carotenoid production
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Overexpression of dxs from a high-
copy plasmid with a strong promoter
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Needs for Metabolic Engineering

• Optimal fluxes through the heterologous metabolic 
pathways

• Strict control over gene expression

• Consistent control of gene expression in all cells

• Minimal burden of the heterologous genes on the 
host

Some key problems 
in gene expression control

• Many expression vectors are unstable and have 
variable copy number in the host

• Many promoters do not allow tight and consistent 
control of gene expression

• There are few techniques to regulate expression of 
multiple heterologous genes

• Can we predict the levels of gene expression needed 
for flux redistribution?
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Gene expression tools for metabolic 
engineering: 

A Metabolic Engineering Toolbox

Gene expression tools for metabolic 
engineeringExpression

vector
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Bacterial Artificial 
Chromosome (BAC)
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Specific replication origins time 
BAC replication with the cell cycle

oriV oriS

EE B P H
43 45 48

par
ccd

A “Kill” element ensures that BAC-
free daughter cells do not survive
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Cell

Division



13

BACs are stable indefinitely in the 
absence of selection pressure
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dxs and dxr under PBAD control 
on bacterial artificial chromosome

Pconst crtE crtI crtY
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Gene expression tools for metabolic 
engineeringReproducible

promoter
control
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outside
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Expression of gfp from the 
arabinose-inducible promoter

100

1000

10000

100000

0.00001 0.0001 0.001 0.01 0.1 1 10

Arabinose (wt %)

Fl
uo

re
sc

en
ce

/O
D

60
0

Desired gene expression in population

Induction/cell

Fr
eq

ue
nc

y
in

 p
op

ul
at

io
n

Induction/cellInduction/cell

100% of cells

are half in
duced

G
en

e
ex

pr
es

si
on

Inducer concentration



17

‘All-or-None’ Gene Expression
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Native arabinose-inducible system 
gives rise to two populations

Increasing 
inducer 
concentration
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Population dynamics as a function of 
arabinose concentration
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inside

outside

P BAD
gfp
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Population analysis of E. coli
expressing gfp
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Experiment:  
Steady-state 

induction 
levels as a 
function of 

inducer 
concentration
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Balancing enzymatic reactions 
in the cell
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Synthetic operons
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The puf operon in Rhodobacter
encodes a multi-subunit enzyme

Q B A L M X

? ?

RC

LHI
Multi-subunit
enzyme

The production of enzyme subunits is 
controlled by mRNA stability

DNA

mRNA

Black arrows indicate RNase E cleavages
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mRNA is 
inactivated 
by a 
cleavage 
inside the 
coding 
region

endoribonuclease

5’ RBS
mRNA

ribosome

cleavage site

exonuclease

Secondary structures in the mRNA 
protect natural mRNAs against 

nucleases

RNase E
endonuclease

exonucleaseRBS

ribosome
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tccatacgtcgacggtaccgtattttggatgataacgaggcgcaaaaaatg
aggtatgcagctgccatggcataaaacctactattgctccgcgttttttac

A cassette 
system to design 
mRNA stability

lacZSal I Asp718
Insertion of hairpin cassette
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Transcription
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A strategy to design mRNA stability?
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Degradation of multicistronic mRNA

Constructs to test operons
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Relative protein levels/mRNA 
stabilities
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Relative protein levels/mRNA 
stabilities
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A synthetic operon for carotenoid 
production

Phytoene Lycopene β-Carotene
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No hairpin 5’ of crtI

Phytoene Lycopene β-Carotene
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crtY crtI
3'5'

HP

Phytoene Lycopene β-Carotene
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A strong hairpin 5’ of crtI
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Carotenoid Production
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A stronger hairpin 5’ of crtI

Phytoene Lycopene β-Carotene
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A weak hairpin 5’ of crtI
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Carotenoid Production
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Gene expression tools for metabolic 
engineering

Metabolic 
models to
quantify

flux

How do you 
coordinate 

the 
expression 
of multiple 

genes?
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Mass Balance on Cellular Metabolites
dX
dt

= S ν - b 
where

X = Concentration of metabolites
S = Stoichiometric matrix

-> known enzymatic reactions
b = Uptake, secretion, and biomass synthesis

-> known from cell composition
ν = Reaction flux vector

-> unknown

Mass Balance on Cellular 
Metabolites

dX
dt

= S ν - b 

Genomics
Proteomics
Physiomics
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=S ν b
number of 

fluxes
(495)

number of 
metabolites

(289)
>

Objective Function: Z = Σ
Constraints:

Lower
Bound

Upper
Bound<  νi < i = 1, 2, ...

S    ν =  b1.
2.

Solve for fluxes 
using linear optimization

At steady-state:

Linear Optimization:

ci νii

Predicted fluxes 
for growth on 
glucose and 
acetate

Experimental Data
Walsh & Koshland (1985)
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Some environmental examples 
of metabolic engineering

Application of metabolic engineering 
to biodesulfurization of fossil fuels

• Dibenzothiophene (DBT) is typical of the 
organic sulfur compounds found in fossil fuels.

• DBT is recalcitrant to hydrodesulfurization.
• Used extensively in biodesulfurization studies

S

DBT (dibenzothiophene)
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Rhodococcus erythropolis IGTS8 
desulfurization pathway
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Role of reducing equivalents
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reduced flavin 
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Comparison of degradation rates

Organism Rate
(mg/hr/g dcw)

Source

E. coli 
pRED/pDSZ

51 This work

Rhodococcus 
erythropolis IGTS8

3 Gallardo (1997)

Rhodococcus 
erythropolis H-2

5 Oshiro (1996)

Relieving bottlenecks in the 
desulfurization pathway
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Overlapping reading frames in dszAB
may limit flux through the pathway
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Native cysteine biosynthesis pathway
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Cysteine production is inhibited by 
cadmium
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Precipitation of CdS 
by the engineered strain
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Cadmium precipitates on the cell 
wall as cadmium sulfide
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