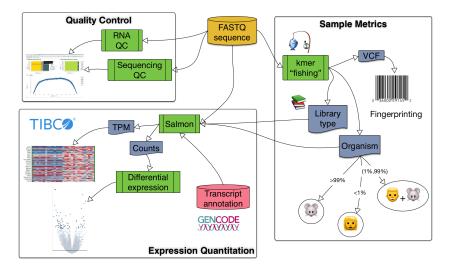
Oncology Bioinformatics

PISCES: a package for quantitation and QC of big mRNA-seq datasets


Matt Shirley (@mdshw5/twitter/github) Investigator – Novartis Institute for Biomedical Research February 16, 2017

Why a new pipeline?

- 1. New tools are faster
- 2. Tooling around new tools is lacking
 - Expression QC
 - Genotyping/fingerprinting
- 3. Automation for reprocessing large datasets
- 4. Reproducibility

What is **PISCES**?

PISCES is a package that eases the burden of processing large numbers of mRNA-seq libraries, and subsequently reducing errors in parameter selection and QC validation and consisting of three analysis modules:

- 1. Single sample analysis of individual mRNA-seq libraries
 - species detection, SNP fingerprinting, library geometry detection, and quantitation using salmon
- 2. Multiple sample aggregation of analysis results
 - summarization, TMM normalization, and differential expression analysis of multiple libraries to produce data formats ready for visualization and further analysis
- 3. Multiple sample aggregation of quality control (QC) results
 - visualization of mRNA-seq library QC metrics

PISCES implementation details

- 1. PISCES is implemented as a python3 package
 - bundled with all necessary dependencies to enable reproducible analysis and easy deployment
- 2. Configuration files are specified to:
 - build transcriptome indices
 - supply sample metadata
 - define contrasts for differential expression analysis using DEseq2
 - define default program parameters
- 3. Development versions will be available on Bitbucket, with python packages installable using pip.

PISCES stats at Novartis Oncology (December 2016)

- 1. 2,894 RNAseq samples processed
 - ~30 CPU years for our previous cufflinks-based pipeline
 - ~2/3 CPU years for PISCES
 - We can reprocess TCGA, GTEx... When we need
- 2. 9,475 lines of code
 - 8757 python
 - 718 R
- 3. Six "stable" releases

2015-12-08

Matthew Shirley

hirley acab3c5

initial commit of SVN version

PISCES workflow

- pisces index
- pisces run
- pisces qc
- pisces summarize

➢Once

- ➢Once each sample
- ➢Once each experiment
- ➢Once each experiment

PISCES "index"

- 1. Creates transcriptome FASTA from input GTFs and genomic FASTAs
 - Optionally masks sequence ATCccccGTA \rightarrow ATCNNNNGTA
 - Add as many as you need: e.g. mouse/human xenograft
- 2. Incorporates "extra" user-defined FASTA files
 - e.g. viral sequences, repetitive elements
- 3. Generates salmon and bowtie2 index files
 - Bowtie2 indices are only used for QC metrics

Reproducible index builds

```
47
         },
         "xeno": {
48
             "gencode": {
49
                 "gtfs": ["/da/onc/harmonization/pisces/annotations/gencode_v25/gencode.v25.annotation.gtf",
50
                           "/da/onc/harmonization/pisces/annotations/gencode_vM10/gencode.vM10.annotation.gtf"],
51
                 "fastas": ["/db/nibrgenome/NG00009.0/fasta/hg38.fa", "/db/nibrgenome/NG00009.0/fasta/mm10.fa"],
52
                 "extra fastas": [],
53
                 "index": "/da/onc/harmonization/pisces/indices/gencode v25 vM10",
54
55
                 "options": {}
56
             },
             "gencode plus": {
57
                 "gtfs": ["/da/onc/harmonization/pisces/annotations/gencode v25/gencode.v25.annotation.gtf",
58
                        "/da/onc/harmonization/pisces/annotations/gencode vM10/gencode.vM10.annotation.gtf"],
59
                 "fastas": ["/db/nibrgenome/NG00009.0/fasta/hg38.fa", "/db/nibrgenome/NG00009.0/fasta/mm10.fa"],
60
                 "extra fastas": ["/home/merkija1/annotations/dfam/Dfam.named.fa", "/home/skewepe1/viper/db/160205 virus nucl.fa"],
61
                 "index": "/da/onc/harmonization/pisces/indices/gencode v25 vM10 plus",
62
                 "options": {}
63
64
             },
             "gencode plus masked": {
65
                 "gtfs": ["/da/onc/harmonization/pisces/annotations/gencode_v25/gencode.v25.annotation.gtf",
66
                        "/da/onc/harmonization/pisces/annotations/gencode_vM10/gencode.vM10.annotation.gtf"],
67
                 "fastas": ["/db/nibrgenome/NG00009.0/fasta/hg38.fa", "/db/nibrgenome/NG00009.0/fasta/mm10.fa"],
68
                 "extra fastas": ["/home/merkija1/annotations/dfam/Dfam.named.fa", "/home/skewepe1/viper/db/160205 virus nucl.fa"],
69
                 "index": "/da/onc/harmonization/pisces/indices/gencode v25 vM10 plus masked",
70
                 "options": {"masked": true}
71
```

U NOVARTIS

Reproducible index builds

```
{
    "human": {
        "gencode": {
            "gtfs": ["/da/onc/harmonization/pisces/annotations/gencode v25/gencode.v25.annotation.gtf"],
            "fastas": ["/db/nibrgenome/NG00009.0/fasta/hg38.fa"],
            "extra_fastas": [],
            "index": "/da/onc/harmonization/pisces/indices/gencode_v25",
            "options": {}
        },
        "gencode plus": {
            "gtfs": ["/da/onc/harmonization/pisces/annotations/gencode v25/gencode.v25.annotation.gtf"],
            "fastas": ["/db/nibrgenome/NG00009.0/fasta/hg38.fa"],
            "extra fastas": ["/home/merkija1/annotations/dfam/Dfam.named.fa", "/home/skewepe1/viper/db/160205 virus nucl.fa"],
            "index": "/da/onc/harmonization/pisces/indices/gencode v25 plus",
            "options": {}
        },
        "gencode_plus_masked": {
            "gtfs": ["/da/onc/harmonization/pisces/annotations/gencode v25/gencode.v25.annotation.gtf"],
            "fastas": ["/db/nibrgenome/NG00009.0/fasta/hg38.fa"],
            "extra fastas": ["/home/merkija1/annotations/dfam/Dfam.named.fa", "/home/skewepe1/viper/db/160205 virus nucl.fa"],
            "index": "/da/onc/harmonization/pisces/indices/gencode v25 plus masked",
            "options": {"masked": true}
        }
    },
    "mouse": {
```

Business or Operating Unit/Franchise or Department

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23 24

25

PISCES workflow

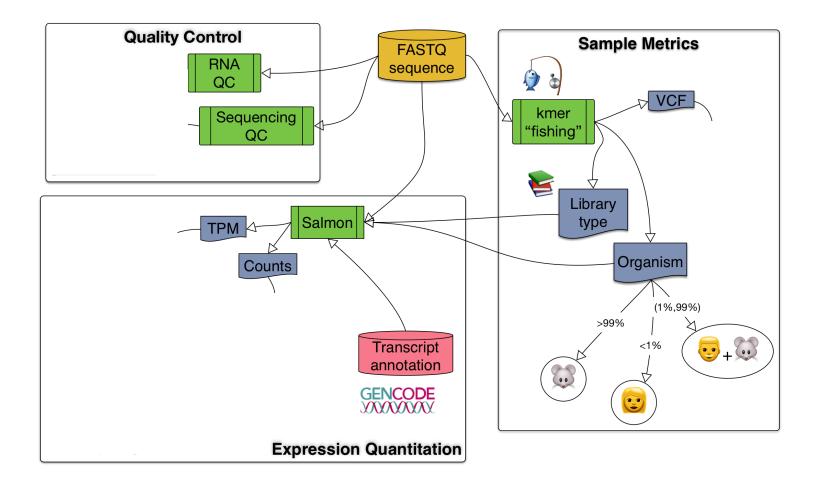
pisces index

- pisces run
- pisces qc
- pisces summarize

≻Once

- Once each sample
- Once each experiment
- ➢Once each experiment

PISCES "run"


- Minimal examples
 - pisces run -fq1 r1_1.fq.gz r1_2.fq -fq2 r2_1.fq ...
 - pisces run -fq1 r1.fq.gz
 - pisces run ... --sample-type xeno --salmon-indices gencode
 - pisces run ... --threads 8 --name patient_10_liver
 - pisces run … --config user-config.json
 - All parameters have defaults, or are inferred from the FASTQ files

PISCES "run"

(v0.6) -bash-4.1\$ pisces run -h usage: pisces run -fg1 [F01 [F01 ...]] [-fg2 [F02 [F02 ...]]] [-n NAME] [-o OUT] [-p THREADS] [-t {human,mouse,xeno}] [-l {IU,ISF,ISR}] [--scratch-dir SCRATCH DIR] [--overwrite] [--salmon-indices [SALMON INDICES [SALMON INDICES ...]]] [--no-alignment-qc] [--make-bam] [--no-salmon] [--no-fastqp] [--no-vcf] [-c CONFIG FILE] [-h] required arguments: -fq1 [FQ1 [FQ1 ...]] space-separated list of gzipped FASTQ read 1 files optional arguments: -fq2 [FQ2 [FQ2 ...]] space-separated list of gzipped FASTQ read 2 files -n NAME, --name NAME sample name used in output files. default=auto -o OUT, --out OUT path to output directory. default=/path/to/\$FQ1/PISCES -p THREADS, --threads THREADS total number of CPU threads to use default=1 -t {human,mouse,xeno}, --sample-type {human,mouse,xeno} species of the sample library default=auto -l {IU,ISF,ISR}, --libtype {IU,ISF,ISR} library geometry for Salmon (http://salmon.readthedocs .org/en/latest/salmon.html#what-s-this-libtype) default=auto --scratch-dir SCRATCH_DIR path to scratch directory default=/scratch --overwrite overwrite existing files --salmon-indices [SALMON_INDICES [SALMON_INDICES ...]] salmon index names (defined in --config-file) default=['gencode_plus'] --no-alignment-gc do not generate picard gc metrics make a BAM file for visualization --make-bam do not run salmon --no-salmon do not generate read-level gc metrics --no-fastqp --no-vcf do not generate vcf file -c CONFIG FILE, --config-file CONFIG FILE default=/usr/prog/onc/seqtools/pisces/v0.6/src/novarti s-pisces/pisces/config.json -h, --help

b NOVARTIS

PISCES "run"

PISCES "run" outputs

(v0.6) -bash-4.1\$ ls
BA-83-ZT03_1_fastqp.txt BA-83-ZT03.fastq1_kmers.txt pisces.log
BA-83-ZT03_1_fastqp.zip BA-83-ZT03.fastq2_kmers.txt qcANALYSIS
BA-83-ZT03_2_fastqp.txt BA-83-ZT03.fastq_fingerprint.vcf salmon
BA-83-ZT03_2_fastqp.zip BA-83-ZT03.pct_human_mouse

- --name "BA-83-ZT03"
- *fastqp* Python clone of FastQC
 - <u>https://github.com/mdshw5/fastqp</u>
- **fastq_fingerprint.vcf*: genotypes derived from kmer counts
- *pct_human_mouse: estimate of mouse/human percent derived from beta-actin kmers
- *qcANALYSIS*: picard metrics from 100,000 downsampled alignments using bowtie2
- Salmon directory contains one or more salmon quant.sf files corresponding to –salmon-indices defined in --config

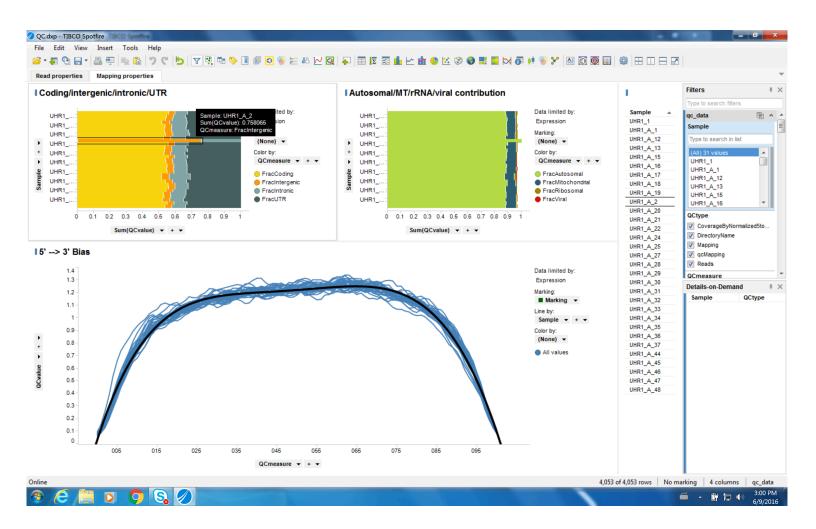
PISCES workflow

- pisces index
- pisces run
- ■pisces qc
- pisces summarize

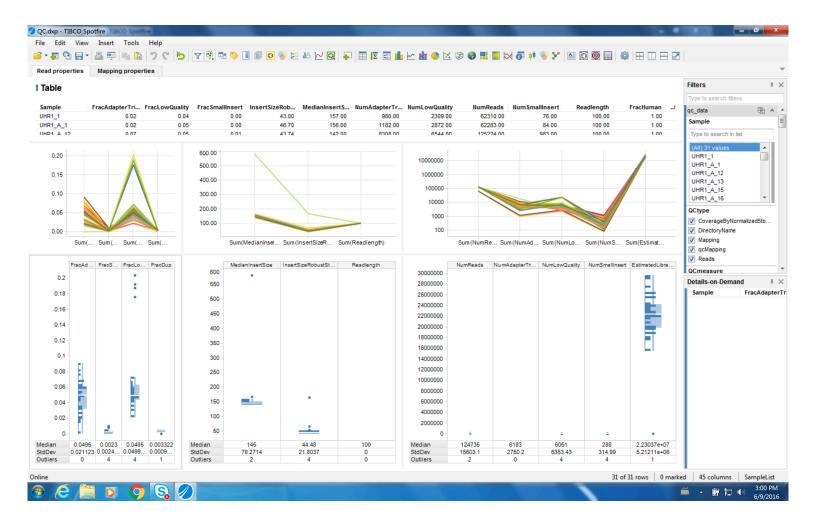
>Once

Once each sample

➢Once each experiment


➢Once each experiment

PISCES "qc"


- Minimal examples
 - pisces qc -tab out.table -tall out.tall [dir1
 [dir2...]]
 - pisces qc -metadata samples.csv
 - pisces qc –fingerprint [dir1 [dir2...]]
- --tab output gathers statistics in a wide table
- --tall output is a tidy table used for visualization
- --fingerprint produces a table of sample identities and pairwise probabilities
 - Use this to find sample swaps

PISCES "qc" Spotfire vis

U NOVARTIS

PISCES "qc" Spotfire vis

U NOVARTIS

- Minimal examples
 - pisces summarize [dir1 [dir2...]]
 - pisces summarize -metadata sample.csv
 - pisces summarize -metadata sample.csv -group-by
 cell_line -norm-by treatment -control-factor DMS0
 - pisces summarize -metadata sample.csv -deseqcontrasts contrasts.yaml -patsy ~treatment+cell_line
- Output files are prefixed by -name

- Minimal examples
 - pisces summarize [dir1 [dir2...]]
 - pisces summarize -metadata sample.csv
 - pisces summarize -metadata sample.csv -group-by
 cell_line -norm-by treatment -control-factor DMS0
 - pisces summarize -metadata sample.csv -deseqcontrasts contrasts.yaml -patsy ~treatment+cell_line
- Output files are prefixed by -name

- Output tables are genes/isoforms x samples (rows x columns)
- Read salmon files using tximport in DESeq2 package
- Annotation for gene-level summaries provided by https://github.com/stephenturner/annotables
- "Tidy" deseq table is 5 column: contrast, log2fc, log10p, basemean, stderr
- Normalization: TPM > remove mito/ribo genes > calculate TMM scaling on protein coding genes > TMM scale all genes

• Minimal examples

- pisces summarize -metadata sample.csv -group-by
cell_line -norm-by treatment -control-factor DMS0

metadata.csv:

SampleID,UUID,CellLine,Treatment,Time,Directory,Groups A3_DMS0_6hr_R1,CA-96-XXXX,A375,DMS0,6hr,../CA-96IY67/PISCES,A3_DMS0_6hr A3_DMS0_6hr_R2,YA-97-XXXX,A375,DMS0,6hr,../YA-97-IB67/PISCES,A3_DMS0_6hr A3_DMS0_24hr_R1,WA-95-XXXX,A375,DMS0,24hr,../WA-95-XA65/PISCES,A3_DMS0_24hr A3_DMS0_24hr_R2,SA-95-XXXX,A375,DMS0,24hr,../SA-95-XE65/PISCES,A3_DMS0_24hr

- pisces summarize -metadata sample.csv -deseqcontrasts contrasts.yaml -patsy ~Treatment~CellLine

contrasts.yaml

Treatment:

- [DrugA_1uM_6h, DMSO_0uM_6h]
- [DrugA_5uM_6h, DMSO_0uM_6h]
- [DrugA_1uM_16h, DMSO_0uM_16h]
- [DrugA_5uM_16h, DMS0_0uM_16h]
- [DrugB_1uM_6h, DMSO_0uM_6h]
- [DrugB_5uM_6h, DMSO_0uM_6h]
- [DrugB_1uM_16h, DMSO_0uM_16h]
- [DrugB_5uM_16h, DMSO_0uM_16h]
- [shRNA1_0uM_48h, Dox_0uM_48h]
- [shRNA2_0uM_48h, Dox_0uM_48h]
- [shRNA1_0uM_72h, Dox_0uM_72h]
- [shRNA2_0uM_72h, Dox_0uM_72h]

(v0.6) -bash-4.1\$ pisces summarize -h

PISCES summary expression matrix and differential expression

```
Usage: summarize [options] [--exclude-genes=GENE]... [<DIR> <DIR>...]
```

Options:

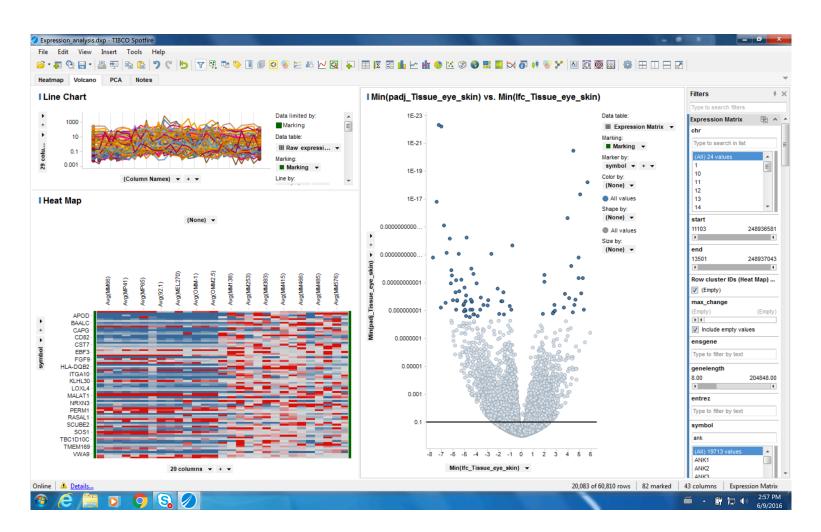
```
-n NAME, --name NAME
 -q IDX, --salmon-quant SALMON_INDEX
 -m META, --metadata METADATA DIR
 -r VAR, --group-by VAR
 -b VAR, --norm-by VAR
 -c FACTOR, --control-factor FACTOR
 -d PATSY, --deseq-formula PATSY
a`)
 -i YAML, --deseq-contrasts YAML
 -s BIOTYPE, --scale-tpm BIOTYPE
 -e TPM, --median-expression TPM_CUTTOFF
 -t FILE, --spotfire-template FILE
 -x GENE, --exclude-genes GENE
 --exclude-ribosomal
 --isoforms
 --debug
```

Output file base name [default: expression_matrix] PISCES Salmon run to aggregate [default: gencode_plus] CSV file describing contrast variables and sample names Column name describing variable to group samples for no Column name of the main variable used for within-group Name of factor in '--norm-by' column used for within-gr `patsy` notation to be passed to DESeq2 e.g: ~ treatmen

YAML annotation of the contrasts of interest (see examp TMM normalize using genes belonging to this ENSEMBL `bi Exclude genes from TMM normalization that have expressing File path at which to create Spotfire template DXP List of genes to exclude from TMM normalization Exclude genes starting with RPS or RPL from TMM scaling Output transcript isoform level matrices Print debugging information

Arguments:

<DIR> Directories containing `pisces run` analysis results


(v0.6) -bash-4.1\$ ls *txt expression_matrix.human.counts.txt expression_matrix.human.deseq.tidy.txt expression_matrix.human.deseq.txt expression_matrix.human.log2fc.TMM-scaled.txt expression_matrix.human.log2fc.txt expression_matrix.human.raw.TMM-scaled.txt expression_matrix.human.raw.txt

ENSG000000000003	31.876041	43.98197	31.24694
ENSG00000000005	0 0	0 0	0 0
ENSG0000000419	642.86735	724.86686	651.867107
ENSG0000000457	383.02904	428.7312	344.55176
ENSG0000000460	90.071902	105.421481	75.579435
ENSG0000000938	6555.15158	6953.14207	10927.14845
ENSG00000000971	61.411666	72.134983	73.60825
ENSG00000001036	226.744579	225.221183	244.833379
ENSG00000001084	439.34715	530.068236	466.932745
ENSG00000001167	436.4706	594.4711	466.4708
ENSG00000001460	67.06453	92.846359	73.648065
ENSG0000001461	513.90091	727.1472	572.96732
ENSG00000001497	792.7377	807.7378	774.738 654.738
ENSG00000001561	235.651 312.651	225.651 206.651	167.651 180.651
FNCC00000001617	76 566000		105 712012

median_length en	trez symb	ol chr	start	end str	and biotype des	scription	
1933.07577885484	7105	TSPAN6	Х	100627109	100639991	-1	protein_coding tetraspanin 6 [Sourc
825.33540625 64	102 TNMD	Х	100584	4802 100	599885 1	protei	.n_coding tenomodulin [Source:HGNC Sym
899.972561340993	8813	DPM1	20	50934867	50958555	-1	protein_coding dolichyl-phosphate m
3774.68332494071	5714	7 SCYL3	1	169849631	169894267	-1	protein_coding SCY1-like, kinase-li
2659.59198414737	5573	2 Clorf1	12	1 169	662007 169	854080	<pre>1 protein_coding chromosome 1</pre>
1839.80820111712	2268	FGR	1	27612064	27635277	-1	<pre>protein_coding FGR proto-oncogene,</pre>
3234,26381228412	3075	CFH	1	196651878	196747504	1	protein coding complement factor H

U NOVARTIS

PISCES "summarize" Spotfire vis

U NOVARTIS

Near term development goals

- 1. Normalization efforts
 - Best practices for TMM normalization
 - Investigate shoal for improving abundance estimates during pisces summarize
 - <u>https://github.com/COMBINE-lab/shoal</u>
- 2. Automated re-identification of samples against a multi-sample VCF
- 3. Determine best practice for sequence masking
- 4. Open source visualizations
- 5. Publication

Takeaways

1. PISCES was developed to solve real-world issues:

- Large number of datasets
- Realize gains in efficiency using new "alignment-free" tools
- Quick, routine QC of each sample, with fingerprinting identity
- Identify sample/species swaps
- Integrated tools to produce analysis or visualization-ready tables
- Packaging of tool dependencies
- Reproducibility of results
- Standardization of RNAseq analysis within NIBR
- 2. PISCES builds on (mostly) open-source tools
- 3. I'll be publishing the framework as a preprint Q1 2017

Acknowledgements

– NIBR

- Josh Korn
- Vivek Krishnamurthy Radhakrishna
- Peter Skewes-Cox
- Jason Merkin
- Stony Brook University
 - Rob Patro (salmon)

Thank you

