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Part I: Constitutive Gene Expression

The CellDesigner model used to simulate constitutive expression is shown below.
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From the law of mass action, we can derive the following differential equationsto model the
system (P = protein).
d[mRNA] =k, — d,[MRNA]

dt
d[P]

o = KImRNA] - d,[P]

To analyze the system further, we can calculate the stead state concentrations of mRNA

d[MRNA] d[P]

within the system as well as protein by setting =0 and e =0. We obtain that

the equilibrium concentrations are as follows in terms of the parameters.

_k

[MRNA],, = 3
_ kk,
[Pl = d,d,

Given some values for the typical half-life for mMRNA and protein, we can derive the values
of d; and d,. From the previous practical, we found that the half-life of the reaction is related
to the rate constant for afirst order reaction as per the equation below.
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The half-life of MRNA is approximately 5 minutes, and the corresponding degradation, d,
valueis0.139 min™. Similarly, the half-life of protein is approximately 40 minutes, giving d;
=0.017 min™.



We can also calculate the values of k; and k, knowing the equilibrium values of mRNA and
protein in the cell. This can be done by considering the steady state equations above and
solving for the appropriate parameter. The average number of mMRNA molecule per genein E.
coli is 2.5, giving ak; value of 0.348 (average transcription rate). The average number of
protein per genein E. coli is 1000, giving ak, value of 6.790 (average trand ation rate).

Below isthe simulation output of constitutive expression. Asis seen, the protein levelsreach
asteady state after about 300 seconds, corresponding to the equilibrium concentration of
proteins that was given. mRNA levels are also at equilibrium, but at 2.5 molecules per gene,
so in the graph below, the dynamics of MRNA levels are not easily seen.
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Let us now explore the quasi-steady state approximation, where we assume that the mRNA
concentration is constant but the levels of protein are not. We thus assume that

% = 0 and substitute [mRNA], :dﬁ into the expression governing the rate of change
1
of protein to be left with % = % —d,[P]. From the equation that was given in the
1

practical sheet, it is clear that s=% and d =d,. Inthefigure below, we plot both the

1
guasi-steady state approximation (in blue) and the original model without making the
approximation (in red). To gain a better understanding of what is going on, it is helpful to
calculate the difference between the two curves at each point in time as shown in the figure
below.

Aswe can see, at longer time periods, the difference between the two approaches zero, and so
we can say that only at long time periods does the quasi-steady state approximation hold. If
we are concerned with short time scales under 150 minutes, it is difficult to say for certain
that the quasi-steady state approximation holds and we should be using the original model.
However, one advantage of using this model is that we can reduce one of the variables so that
we only have one equation rather than two. Thisisimportant if we are considering a multi-
dimensional model and we want to reduce our model. It is also advantageous to take the
guasi-steady state approximation if we are only concerned with the steady-state values and
not the transient states.
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Part I1: Activated and Repressed Gene Expression

We define the topology of the system with the diagram below.
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Gene

From the law of mass action and modelling the repressor through a Hill equation, we obtain
the equations below that describe the system:

dmRNA]_ Ko g (mRNA
dt k., +R
d[P]

o = KImRNA] - d,[P]

This system suddenly becomes non-linear and much more difficult to analyze analytically.

We resort to good numerics to investigate this system (as run in CellDesigner).

d[mRNA]
dt

To compute the transfer function, we only consider the steady state such that 0

and % =0. Thisgivesusthat the steady state value of mRNA and proteinis:

Ko, Ky
MRNA], = —=X——"—
[ Je d k,"+R"
kk K,

P
[Pl dd, k"+R"

m



From the equations above, we can see that the value of k,, and n have no effect on the system
if thereis no repressor in the system. An ordinary increase of repressor is expected to
decrease the steady state concentration, and that is what is seen in the top left graph below.
Once kn, ison the order of R isthere an effect on the steady-state values of the system.
Increasing the value of kn, will tend to increase the steady state concentration for a given
value of R as shown in the top right graph below. The variability of nis more complex to
analyze and it depends on therelative side of ky, to R. If Rislessthan ky, increasing the
value of nwill tend to increase the steady state concentration (see bottom left), but if Ris
greater than Kk, increasing the value of n will tend to lower the steady state concentration (see
bottom right). These relationships are easily illustrated in the figures below. Thered lineson
the graph show the minimum value of the parameter.
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We can a so investigate the transfer function between repressor concentration and protein
concentration with the effect of n. Thisis shown in the figure below. The red line showsthe
transfer function when n = 1 and becomes more sigmoidal with increasing values of n.
Increasing values of n will require that the repressor concentration isincreased to a certain
amount before a noticeable difference in the steady state will be seen. The point at which all
of the lines meet is at the value of ky, as expected from the analysis above.
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One application of where arepressor circuit may be useful is when we want to create a
genetic inverter such that a high input of our molecule will cause transcriptional repression to
occur, lowering the output.

Similarly to the above analysis, we can also analyze an activator circuit.

We first define the topology of the system below.
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Following a similar Hill-like equation, we can derive the rate equations for the system taking
into account the activator.

d[mRNA] _ I:lA g [mRNA]
dt k, +A
d[P] _

= k,[mRNA] —d,[P]

To calculate the transfer function, we again set both differential equations equal to zero and
solve for the steady-state protein equilibrium.

[mRNA], = ax A

d k' +A"
ki, . A
Pl,. = X
[Ple dd, k,"+A"



As is seen in the above eguations, the dependence on activator concentration, A, is now quite
strong aslong asit is not around the value of k. Without activator, there will be no
expression of both mRNA and protein, but as soon as there is activator in the system, then
gene expression will occur. As activator concentration increases towards the value of ky, the

protein equilibrium approaches [P],, = ﬁxl , and as activator concentration increases

dd,
even further to much larger values above kr, then [P],, = % . Thefigure below shows the
1+2
time evolution of the protein for the system. The red line corresponds to the activator
concentration of 1.
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Similar to the system with the repressor, the effect ki, is only seen when it is close to the
activator concentration. The effects of kn, are seen in the figure below. As expected, an
increase in ky, for agiven activator concentration will result in a decrease in the steady-state

concentration of protein.
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Similar, the value of nwill also only be seen when there is a difference between the value of
km and activator concentration. Below are two scenarios where kA and k<A and the
effect of different values of n. The effects are opposite to the repressor results. If A<k, then
increasing n will result in a decrease in steady-state concentration. The oppositeistrue if
A>Kn.
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We can a so investigate the transfer function (protein concentration as a function of activator
concentration) and also see the effects of n from there. Thisis shown in the figure below.
The red line shows the transfer function with n = 1 and as the value of n isincreased, the
transfer function becomes more sigmoidal, characteristic of increasing cooperativity. Also as
n increases, it takes a much higher concentration of activator for the steady state
concentration of protein to be at ahigh level.
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An activator circuit might be helpful if we want gene expression to turn on at a certain time
point and we can induce expression with the addition of an activator, similar to a switch
which isinitially turned off.

Part 111: Positive and Negative Feedback
We again define the topology of the network in CellDesigner with one circuit that is

constitutive, one that has positive feedback from its products, and on that has a negative
feedback from its products.
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For the Constitutive Circuit:
M =k, —d,[mRNA]
dt
d[P] _

- = K[MRNA] - d,[P]

For the Repressor Circuit:
d[mRNA]  kk,'

d k" +[P]"
d[P]

= = KlmRNAL - [P

— d[mRNA]

For the Activator Circuit:
d[mRNA] _ k[P]"
dt k" +[P]"

LT] = k,[MRNA] - d,[P]

— d,[MRNA]

Given the values of our parameters, we can calculate the fixed points of the systemto get a
glimpse of the behaviour of the system. The fixed points will tell us at what values we can
expect our system to reach at steady state if they are attracting fixed points.

For the congtitutive circuit (given the parameters), the fixed point is at (2.5, 1000). Thus at
steady state, the concentration of mMRNA will reach 2.5 molecules per gene and concentration
of protein will be 1000 molecules per gene. What we see here is that our steady state value
reaches the values that we predicted the cell to have (on average they have 2.5 mRNA
molecules per gene and 1000 protein molecules per gene).

For the repressor circuit, this system has become non-linear and from matlab, we see that
thereisonly onereal fixed point and two imaginary fixed points to the system. Thisfixed
point occurs at (0.5, 200). Because there is arepressor circuit, we see that the steady-state
concentration is slightly lower for both mRNA and protein than the constitutive expression.



For the activator circuit, we now have three fixed pointsin the system. (0, 0), (2.5, 990), and
(0.025, 10.1). For thefixed point (0, 0), the eigenvalues of the Jacobian matrix evaluated at
the fixed point are negative, and thus show that thisis a stable fixed point. For the fixed
point (2.5, 990), the eigenvalues of the Jacobian matrix evaluated at the fixed point are also
negative, and thus show that thisis a stable fixed point. For the fixed point (0.025, 10.1), oen
of the the eigenvalues of the Jacobian matrix evaluated at the fixed point is negative and one
is positive, and thus show that thisis a saddle node.

For constitutive expression, the time evolution with initial conditions of (0, 0) is shown below
along with a plot of random trajectories derived from random initial conditions on the phase
plane clearly attracted to the fixed point at (2.5, 1000).
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For the negative feedback circuit, the time evolution is shown again with initial conditions of
(0, 0) aswell asaplot of random trajectories derived from random initial conditions on the
phase plane also showing that the tragjectories are attracted to the fixed point (0.5, 200).
Although the trajectories seem to amost be developing acycle, there is no evidence of alimit
cycle. However, sincethisisanon-linear problem, this does not exclude the existence of a
limit cycle at different parameter values.
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For the positive feedback circuit, the time evolution with initial conditions of (0, 0) is not
very exciting since we are starting with afixed point. If we start at variousinitia protein
concentrations while keeping the mRNA concentration at 0, then we do see a change in the
behaviour of the system around Py = 11.2 as shown in the figure below showing the effect of
the saddle node in its ability to drive the system from one fixed point to another.
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We can also visualize this effect on the phase plane where we randomly select many initial
conditions and plot their trajectories in the figure below. What isinteresting to note is that at
low values of protein (P less than 100, mRNA, less than 1.5), the trajectories are strongly
pulled towards the (0.025, 10.1) fixed point, but are then driven towards the (2.5, 990) fixed
point as they get close to the saddle node. All other initial conditions besides (0, 0) seem to
go to the (2.5, 990) fixed point. What is not clearly evident here is the presence of the (0, 0)
fixed point which should be stable aswell. 1t would seem that the proximity of the saddle
node would keep most trgjectories within initial conditions above (0.025, 10.1) away from the
(O, 0) fixed point and drive it towards the other fixed point.
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But what are the biological implications of this behaviour? This shows that there needsto be
acertain level of protein already present in the cell (either injected or due to leaky gene
expression) to stimulate the system to be “fully on”. Under that certain level, there will be no
expression at all and the protein will just get degraded before it can continuously activate the
system.

Comparing the three different modelsis quite difficult as the behaviour varies depending

upon initial conditions. To avoid the problem of the saddle node in the positive feedback
loop, we will select an initial condition that iswell clear of the saddle node. To this effect,
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we have selected the initial conditions (1, 100). The figure below shows the time evolutions
of protein concentrations for each system.
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The red line above shows constitutive expression, blue line shows the negative feedback
system, and the green line shows the positive feedback system. Comparing the time it takes
to reach steady state, the negative feedback loop is the fastest, reaching steady state in less
than 50 minutes. The other two systems take about 300-350 minutes to reach steady state.
Comparing the steady state level, both positive feedback and constitutive expression levels
give approximately the same steady state while the negative feedback system shows a much
lower steady state.

The comparison between the three systems is made slightly easier when all of them have the
same steady state value. In the figure below, the three systems have calculated parameters
such that the steady state valueis around 1000. The blue line corresponds to the negative
feedback, red line to constitutive expression, and green line to positive feedback. We can
again see that the negative feedback system isfaster at reaching the steady state value than
the other two systems. Both the positive feedback and constitutive expression show about the
same time to reach steady-state.
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Once the system has reached steady state, which is more robust to pertubations in the system?
To answer this question, we can ook again at the magnitude of the eigenvalues at the steady
fixed point. The eigenvaluestell usthe speed to which the trajectories will approach the
fixed point since they give the value of the exponential. For constitutive expression with the
new values, the eigenvalues are -0.138 and -0.017 for the fixed point (2.5, 1022). For the
negative feedback system, the eigenvalues are -0.0409 and -0.1141 for the fixed point (2.54,
955). For the positive feedback system, the parameters that have been chosen now have
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different fixed points. There are now only two fixed points, instead of three. The (0,0) fixed
point has now become a saddle node since one of the eigenvalues is positive and the other
negative. The fixed point at (2.48, 932) is a stable fixed point with eigenvalues -0.138 and -
0.017, the same eigenvalues as for the constitutive expression showing that both the
constitutive and positive expression have similar robustness. The negative feedback system
has dlightly lower eigenvalues, but might be because of the change in parameter values. |If
the lower eigenvalues are correct, this would mean that it takes alonger time to get back to
the steady state value than for the other two systems.
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