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Part I:  Constitutive Gene Expression 
 
The CellDesigner model used to simulate constitutive expression is shown below. 

 
From the law of mass action, we can derive the following differential equations to model the 
system (P = protein). 
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To analyze the system further, we can calculate the stead state concentrations of mRNA 

within the system as well as protein by setting 0][ =
dt

mRNAd  and 0][ =
dt
Pd .  We obtain that 

the equilibrium concentrations are as follows in terms of the parameters. 
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Given some values for the typical half-life for mRNA and protein, we can derive the values 
of d1 and d2.  From the previous practical, we found that the half-life of the reaction is related 
to the rate constant for a first order reaction as per the equation below. 
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The half-life of mRNA is approximately 5 minutes, and the corresponding degradation, d1, 
value is 0.139 min-1.  Similarly, the half-life of protein is approximately 40 minutes, giving d2 
= 0.017 min-1.   
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We can also calculate the values of k1 and k2 knowing the equilibrium values of mRNA and 
protein in the cell.  This can be done by considering the steady state equations above and 
solving for the appropriate parameter.  The average number of mRNA molecule per gene in E. 
coli is 2.5, giving a k1 value of 0.348 (average transcription rate).  The average number of 
protein per gene in E. coli is 1000, giving a k2 value of 6.790 (average translation rate). 
 
Below is the simulation output of constitutive expression.  As is seen, the protein levels reach 
a steady state after about 300 seconds, corresponding to the equilibrium concentration of 
proteins that was given.  mRNA levels are also at equilibrium, but at 2.5 molecules per gene, 
so in the graph below, the dynamics of mRNA levels are not easily seen. 
 

 
 
Let us now explore the quasi-steady state approximation, where we assume that the mRNA 
concentration is constant but the levels of protein are not.  We thus assume that 

0][ =
dt

mRNAd  and substitute 
1

1][
d
kmRNA eq =  into the expression governing the rate of change 

of protein to be left with ][][
2
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Pd −= .  From the equation that was given in the 

practical sheet, it is clear that 
1

21

d
kks =  and 2dd = .  In the figure below, we plot both the 

quasi-steady state approximation (in blue) and the original model without making the 
approximation (in red).  To gain a better understanding of what is going on, it is helpful to 
calculate the difference between the two curves at each point in time as shown in the figure 
below. 
 
As we can see, at longer time periods, the difference between the two approaches zero, and so 
we can say that only at long time periods does the quasi-steady state approximation hold.  If 
we are concerned with short time scales under 150 minutes, it is difficult to say for certain 
that the quasi-steady state approximation holds and we should be using the original model.  
However, one advantage of using this model is that we can reduce one of the variables so that 
we only have one equation rather than two.  This is important if we are considering a multi-
dimensional model and we want to reduce our model.  It is also advantageous to take the 
quasi-steady state approximation if we are only concerned with the steady-state values and 
not the transient states. 
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Part II:  Activated and Repressed Gene Expression 
 
We define the topology of the system with the diagram below. 

 
 

From the law of mass action and modelling the repressor through a Hill equation, we obtain 
the equations below that describe the system: 
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This system suddenly becomes non-linear and much more difficult to analyze analytically.  
We resort to good numerics to investigate this system (as run in CellDesigner). 
 

To compute the transfer function, we only consider the steady state such that 0][ =
dt

mRNAd  

and 0][ =
dt
Pd .  This gives us that the steady state value of mRNA and protein is: 
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From the equations above, we can see that the value of km and n have no effect on the system 
if there is no repressor in the system.  An ordinary increase of repressor is expected to 
decrease the steady state concentration, and that is what is seen in the top left graph below.  
Once km is on the order of R is there an effect on the steady-state values of the system.  
Increasing the value of km will tend to increase the steady state concentration for a given 
value of R as shown in the top right graph below. The variability of n is more complex to 
analyze and it depends on the relative side of km to R.  If R is less than km, increasing the 
value of n will tend to increase the steady state concentration (see bottom left), but if R is 
greater than km, increasing the value of n will tend to lower the steady state concentration (see 
bottom right).  These relationships are easily illustrated in the figures below.  The red lines on 
the graph show the minimum value of the parameter. 
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We can also investigate the transfer function between repressor concentration and protein 
concentration with the effect of n.  This is shown in the figure below.  The red line shows the 
transfer function when n = 1 and becomes more sigmoidal with increasing values of n.  
Increasing values of n will require that the repressor concentration is increased to a certain 
amount before a noticeable difference in the steady state will be seen.  The point at which all 
of the lines meet is at the value of km, as expected from the analysis above.  
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One application of where a repressor circuit may be useful is when we want to create a 
genetic inverter such that a high input of our molecule will cause transcriptional repression to 
occur, lowering the output. 
 
Similarly to the above analysis, we can also analyze an activator circuit. 
 
We first define the topology of the system below. 

 
Following a similar Hill-like equation, we can derive the rate equations for the system taking 
into account the activator. 
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To calculate the transfer function, we again set both differential equations equal to zero and 
solve for the steady-state protein equilibrium. 
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As is seen in the above equations, the dependence on activator concentration, A, is now quite 
strong as long as it is not around the value of km.  Without activator, there will be no 
expression of both mRNA and protein, but as soon as there is activator in the system, then 
gene expression will occur.  As activator concentration increases towards the value of km, the 

protein equilibrium approaches 
2
1][

21

21 ×=
dd
kkP eq , and as activator concentration increases 

even further to much larger values above km, then 
21

21][
dd
kkP eq = .  The figure below shows the 

time evolution of the protein for the system.  The red line corresponds to the activator 
concentration of 1. 
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Similar to the system with the repressor, the effect km is only seen when it is close to the 
activator concentration.  The effects of km are seen in the figure below.  As expected, an 
increase in km for a given activator concentration will result in a decrease in the steady-state 
concentration of protein. 
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Similar, the value of n will also only be seen when there is a difference between the value of 
km and activator concentration.  Below are two scenarios where km>A and km<A and the 
effect of different values of n.  The effects are opposite to the repressor results.  If A<km then 
increasing n will result in a decrease in steady-state concentration.  The opposite is true if 
A>km.   
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We can also investigate the transfer function (protein concentration as a function of activator 
concentration) and also see the effects of n from there.  This is shown in the figure below.  
The red line shows the transfer function with n = 1 and as the value of n is increased, the 
transfer function becomes more sigmoidal, characteristic of increasing cooperativity.  Also as 
n increases, it takes a much higher concentration of activator for the steady state 
concentration of protein to be at a high level.   
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An activator circuit might be helpful if we want gene expression to turn on at a certain time 
point and we can induce expression with the addition of an activator, similar to a switch 
which is initially turned off.   
 
Part III:  Positive and Negative Feedback 
 
We again define the topology of the network in CellDesigner with one circuit that is 
constitutive, one that has positive feedback from its products, and on that has a negative 
feedback from its products. 
 



 8

 
For the Constitutive Circuit: 
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For the Repressor Circuit: 
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For the Activator Circuit: 
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Given the values of our parameters, we can calculate the fixed points of the system to get a 
glimpse of the behaviour of the system.  The fixed points will tell us at what values we can 
expect our system to reach at steady state if they are attracting fixed points. 
 
For the constitutive circuit (given the parameters), the fixed point is at (2.5, 1000).  Thus at 
steady state, the concentration of mRNA will reach 2.5 molecules per gene and concentration 
of protein will be 1000 molecules per gene.  What we see here is that our steady state value 
reaches the values that we predicted the cell to have (on average they have 2.5 mRNA 
molecules per gene and 1000 protein molecules per gene).   
 
For the repressor circuit, this system has become non-linear and from matlab, we see that 
there is only one real fixed point and two imaginary fixed points to the system.  This fixed 
point occurs at (0.5, 200).  Because there is a repressor circuit, we see that the steady-state 
concentration is slightly lower for both mRNA and protein than the constitutive expression. 
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For the activator circuit, we now have three fixed points in the system.  (0, 0), (2.5, 990), and 
(0.025, 10.1).  For the fixed point (0, 0), the eigenvalues of the Jacobian matrix evaluated at 
the fixed point are negative, and thus show that this is a stable fixed point.  For the fixed 
point (2.5, 990), the eigenvalues of the Jacobian matrix evaluated at the fixed point are also 
negative, and thus show that this is a stable fixed point.  For the fixed point (0.025, 10.1), oen 
of the the eigenvalues of the Jacobian matrix evaluated at the fixed point is negative and one 
is positive, and thus show that this is a saddle node.   
 
For constitutive expression, the time evolution with initial conditions of (0, 0) is shown below 
along with a plot of random trajectories derived from random initial conditions on the phase 
plane clearly attracted to the fixed point at (2.5, 1000).   
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For the negative feedback circuit, the time evolution is shown again with initial conditions of 
(0, 0) as well as a plot of random trajectories derived from random initial conditions on the 
phase plane also showing that the trajectories are attracted to the fixed point (0.5, 200).  
Although the trajectories seem to almost be developing a cycle, there is no evidence of a limit 
cycle.  However, since this is a non-linear problem, this does not exclude the existence of a 
limit cycle at different parameter values. 
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For the positive feedback circuit, the time evolution with initial conditions of (0, 0) is not 
very exciting since we are starting with a fixed point.  If we start at various initial protein 
concentrations while keeping the mRNA concentration at 0, then we do see a change in the 
behaviour of the system around P0 = 11.2 as shown in the figure below showing the effect of 
the saddle node in its ability to drive the system from one fixed point to another. 
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We can also visualize this effect on the phase plane where we randomly select many initial 
conditions and plot their trajectories in the figure below.  What is interesting to note is that at 
low values of protein (P0 less than 100, mRNA0 less than 1.5), the trajectories are strongly 
pulled towards the (0.025, 10.1) fixed point, but are then driven towards the (2.5, 990) fixed 
point as they get close to the saddle node.  All other initial conditions besides (0, 0) seem to 
go to the (2.5, 990) fixed point.  What is not clearly evident here is the presence of the (0, 0) 
fixed point which should be stable as well.  It would seem that the proximity of the saddle 
node would keep most trajectories within initial conditions above (0.025, 10.1) away from the 
(0, 0) fixed point and drive it towards the other fixed point. 
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But what are the biological implications of this behaviour?  This shows that there needs to be 
a certain level of protein already present in the cell (either injected or due to leaky gene 
expression) to stimulate the system to be “fully on”.  Under that certain level, there will be no 
expression at all and the protein will just get degraded before it can continuously activate the 
system.   
 
Comparing the three different models is quite difficult as the behaviour varies depending 
upon initial conditions.  To avoid the problem of the saddle node in the positive feedback 
loop, we will select an initial condition that is well clear of the saddle node.  To this effect, 
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we have selected the initial conditions (1, 100).  The figure below shows the time evolutions 
of protein concentrations for each system. 
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The red line above shows constitutive expression, blue line shows the negative feedback 
system, and the green line shows the positive feedback system.  Comparing the time it takes 
to reach steady state, the negative feedback loop is the fastest, reaching steady state in less 
than 50 minutes.  The other two systems take about 300-350 minutes to reach steady state.  
Comparing the steady state level, both positive feedback and constitutive expression levels 
give approximately the same steady state while the negative feedback system shows a much 
lower steady state.   
 
The comparison between the three systems is made slightly easier when all of them have the 
same steady state value.  In the figure below, the three systems have calculated parameters 
such that the steady state value is around 1000.  The blue line corresponds to the negative 
feedback, red line to constitutive expression, and green line to positive feedback.  We can 
again see that the negative feedback system is faster at reaching the steady state value than 
the other two systems.  Both the positive feedback and constitutive expression show about the 
same time to reach steady-state.   
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Once the system has reached steady state, which is more robust to pertubations in the system?  
To answer this question, we can look again at the magnitude of the eigenvalues at the steady 
fixed point.  The eigenvalues tell us the speed to which the trajectories will approach the 
fixed point since they give the value of the exponential.  For constitutive expression with the 
new values, the eigenvalues are -0.138 and -0.017 for the fixed point (2.5, 1022).  For the 
negative feedback system, the eigenvalues are -0.0409 and -0.1141 for the fixed point (2.54, 
955).  For the positive feedback system, the parameters that have been chosen now have 
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different fixed points.  There are now only two fixed points, instead of three.  The (0,0) fixed 
point has now become a saddle node since one of the eigenvalues is positive and the other 
negative.  The fixed point at (2.48, 932) is a stable fixed point with eigenvalues -0.138 and -
0.017, the same eigenvalues as for the constitutive expression showing that both the 
constitutive and positive expression have similar robustness.  The negative feedback system 
has slightly lower eigenvalues, but might be because of the change in parameter values.  If 
the lower eigenvalues are correct, this would mean that it takes a longer time to get back to 
the steady state value than for the other two systems.   


