An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor

Christiane A. Opitz1,2,4, Ulrike M. Litzenburger1,2, Felix Sahm1, Martina Ott1,2, Isabel Tritschler4, Saskia Trump5, Theresa Schumacher1,2, Leonie Jestaedt6, Dieter Schrenk7, Michael Weller4, Manfred Judolid8, Gilles J. Guillemin9, Christine L. Miller10, Christian Lutz11, Bernhard Radlwimmer12, Irina Lehmann5, Andreas von Deimling3, Wolfgang Wick1,13 & Michael Platten1,2

Degradation of Trp by indoleamine-2,3-dioxygenases 1 and 2 (IDO1/2) in tumours and tumour-draining lymph nodes inhibits antitumour immune responses1–5 and is associated with a poor prognosis in various malignancies6. Inhibition of IDO1/2 suppresses tumour formation in animal models1,3 and is currently tested in phase I/II clinical trials in patients with cancer2. The relevance of Trp catabolism to human tumour formation and progression is, however, as yet unknown.

TDO degrades Trp to Kyn in human brain tumours

A screen of human cancer cell lines revealed constitutive degradation of Trp and release of high micromolar amounts of Kyn in brain tumour cells, namely glioma cell lines and glioma-initiating cells (GICs), but not human astrocytes (Fig. 1a). IDO1 and IDO2 did not account for the constitutive Trp catabolism in brain tumours (Supplementary Fig. 1a–e). Instead, tryptophan-2,3-dioxygenase (TDO), which is predominantly expressed in the liver (Supplementary Fig. 3a, b) and is believed to regulate systemic TDO concentrations8, was strongly expressed in human glioma cells (Supplementary Fig. 1b) and correlated with Kyn release (Fig. 1b). Pharmacological inhibition or knockdown of TDO blocked Kyn release by glioma cells, whereas knockdown of IDO1 and IDO2 had no effect (Fig. 1c, d and Supplementary Fig. 2a), thus confirming that TDO is the central Trp-degrading enzyme in human glioma cells. In human brain tumour specimens, TDO protein levels increased with malignancy and correlated with the proliferation index (Fig. 1e–g and Supplementary Fig. 2b–d). As described previously9, healthy human brain showed only weak TDO staining in neurons (Fig. 1e). TDO expression was not confined to gliomas but was also detected in other cancer types (Supplementary Fig. 3b, c). Lower Trp concentrations were measured in the serum of patients with glioma (Fig. 1h). These may not have translated into increased Kyn levels (Fig. 1h) because Kyn is taken up by other cells and metabolized to quinolinic acid. Indeed, accumulation of quinolinic acid was detected in TDO-expressing glioblastoma tissue (Fig. 1i and Supplementary Fig. 3d).

Effects of TDO-mediated Kyn release on immune cells

Kyn suppresses allogeneic T-cell proliferation9. Allogeneic T-cell proliferation was inversely correlated with Kyn formation by glioma-derived TDO (Fig. 2a and Supplementary Fig. 4a, b). Knockdown of TDO in glioma cells (Supplementary Fig. 4c, d) restored allogeneic T-cell proliferation, and the addition of Kyn to the TDO knockdown cells prevented the restoration of T-cell proliferation (Fig. 2b). The proliferation of CD4+ and CD8+ T cells stimulated by the T-cell receptor was inhibited by Kyn in a concentration-dependent manner (Supplementary Fig. 4e). In addition, knockdown of TDO resulted in enhanced lysis of glioma cells by alloreceptive peripheral blood mononuclear cells (Supplementary Fig. 4f). Finally, decreased infiltration with leukocyte common antigen (LCA)-positive and CD8+ immune cells was observed in sections of human glioma with high TDO expression in comparison with those with low TDO expression (Fig. 2c), indicating that Kyn formation by TDO may suppress antitumour immune responses. In vivo experiments in immuno-competent mice demonstrated that tumours expressing TDO grew
Figure 1  |  TDO degrades Trp to Kyn in human brain tumours. a, Trp (left) and Kyn (right) content in the supernatants of human astrocytes (hAs), glioma cell lines and GICs (T323) cultured for 72 h and measured by high-performance liquid chromatography (HPLC) (n = 4). b, Correlation between TDO mRNA and Kyn release by human glioma cells measured by quantitative RT–PCR and HPLC (n = 4). c, Kyn concentrations in the supernatants of U87 glioma cells cultured for 48 h in the presence of the TDO inhibitor 680C91 (black bars) or its solvent (white liquid chromatography (HPLC) (n = 4). d, Correlation of the Ki-67 proliferative index with the TDO H-score (see Supplementary Methods) in brain tumours of increasing malignancy (WHO grades II–IV; grade II, n = 18; grade III, n = 15; grade IV, n = 35). e, Correlation of the Ki-67 proliferative index with the TDO H-score in gliomas of different WHO grades (n = 42). f, Kyn (left) and Kyn (right) concentrations in the sera of 24 patients with glioblastoma and 24 age-matched and sex-matched healthy controls (Light grey bars). g, Correlation between TDO mRNA and IDO2 (light grey bars) or IDO2 (light grey bars) by siRNA (n = 3). e, Upper panel: weak neuronal TDO expression in healthy brain tissue. Lower panel: TDO expression in glioblastoma (WHO grade IV). TDO staining is in red. Asterisk indicates necrosis; arrowheads indicate the border faster and had a higher proliferation index than TDO-deficient control tumours (Fig. 2d and Supplementary Fig. 4g-i). TDO activity in TDO-expressing tumours in comparison with mice bearing TDO-specific T cells and tumour cell lysis by spleen cells of mice bearing TDO-deficient tumours (Fig. 2e, f).

Effects of TDO–mediated Kyn release on glioma cells
We next assessed the autocrine effects of Kyn on glioma cells. Although no differences in cell cycle progression were detected between controls and glioma cells with TDO knockdown (Supplementary Fig. 5a), knockdown of TDO decreased mitotic and clonogenic survival (Fig. 2g, h and Supplementary Fig. 5b–d). This was mediated by Kyn because exogenous addition of Kyn restored mitotic and clonogenic survival in the absence of Trp (Fig. 2i, j and Supplementary Fig. 5e, f), suggesting that Kyn increases the motility of malignant glioma cells. In GICs, sphere formation was enhanced in response to Kyn (Supplementary Fig. 5g). Finally, tumour formation was impaired when TDO knockdown tumours were orthotopically implanted in the brains of nude mice, which are devoid of functional T cells (Fig. 2k and Supplementary Fig. 5h, i). To analyse whether TDO-mediated inhibition of antitumour natural killer (NK)-cell responses, which are functional in nude mice, might account for the impaired formation of TDO knockdown tumours, we compared subcutaneous tumour growth in the presence or absence of NK cells. NK-cell depletion (Supplementary Fig. 5j) enhanced the growth of both control and TDO knockout tumours but did not restore the growth of TDO knockout tumours to that in controls (Fig. 2l and Supplementary Fig. 5k), suggesting that Kyn generated by constitutive TDO activity to infiltrated brain tissue. Insets: single tumour cells (arrows) infiltrating the adjacent brain tissue. Magnifications: ×40 (main panels), ×400 (upper inset) and ×100 (lower inset). f, Plot of TDO expression (H-score; see Supplementary Methods) in brain tumours of increasing malignancy (WHO grades II–IV; grade II, n = 18; grade III, n = 15; grade IV, n = 35). g, Correlation of the Ki-67 proliferative index with the TDO H-score in gliomas of different WHO grades (n = 42). h, Trp (left) and Kyn (right) concentrations in the sera of 24 patients with glioblastoma and 24 age-matched and sex-matched healthy controls, measured by HPLC. i, Quantiﬁcation of staining with quinolinic acid in healthy human brain tissue (white bar; n = 5) and glioblastoma tissue (black bar; n = 5). The data distribution in f and g is presented as box plots, showing the 25th and 75th centiles together with the median; whiskers represent the 10th and 90th centiles, respectively. Error bars indicate s.e.m.

Kyn activates the aryl hydrocarbon receptor
For a better understanding of the molecular mechanisms underlying the autocrine effects of Kyn on glioma cells, we performed microarray analyses of Kyn-treated glioma cells revealing broad induction of aryl hydrocarbon receptor (AhR) response genes by Kyn (Fig. 3a and Supplementary Figs 6a, b and 7). Pathway analyses showed that the 25 genes that were most strongly induced by Kyn treatment in U87 cells at 8 h and at 24 h were all directly or indirectly regulated by the AhR (Fig. 3a and Supplementary Fig. 6b). The AhR is a transcription factor of the basic helix–loop–helix (bHLH) Per–Arnt–Sim (PAS) family, which is activated by xenobiotics such as benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)10. Malignant glioma cell lines and GICs express the AhR constitutively (Supplementary Fig. 6c)11, and upregulation of AhR target genes by Kyn was confirmed in two different glioma cell lines (Supplementary Fig. 6d, e). Kyn led to translocation of the AhR into the nucleus after 1 h, thus showing an immediate effect of Kyn on the AhR (Fig. 3b, c and Supplementary Fig. 8a). In accordance with this, western blot analyses of Kyn-activated tumour cells showed decreased cytoplasmic localization paralleled by increased nuclear accumulation of the AhR comparable to that induced by TCDD (Fig. 3d). In the nucleus the AhR forms a heterodimer with the AhR nuclear translocator (ARNT) that interacts with the core-binding motif of the dioxin-responsive elements (DRE) located in regulatory regions of AhR target genes12. Kyn induced DRE–luciferase activity in glioma cells, with a concentration giving half-maximal response (EC50) of 36.6 μM (Fig. 3e,
Figure 2 | Paracrine and autocrine effects of TDO-mediated Kyn release by glioma cells. a, Correlation of the proliferation of peripheral blood mononuclear cells (PBMCs) cultured with allogeneic glioma cell lines with the Kyn release of the glioma cells (n = 3). b, Proliferation of PBMCs cultured with allogeneic TDO-expressing control U87 glioma cells (sh-c) in comparison with U87 glioma cells with a stable short hairpin RNA-mediated knockdown of TDO (sh-TDO), with or without 100 μM Kyn (black bars), in comparison with PBMCs alone or with 100 μM Kyn (white bars; n = 3).

c, Quantification of LCA+ cells (left) and CD8+ cells (right) stained in human glioma sections with low TDO expression (H-score < 150, white bar; n = 12 for LCA, n = 10 for CD8) and in human glioma sections with high TDO expression (H-score ≥ 150, black bar; n = 17 for LCA, n = 10 for CD8). d, Growth of Tdo-deficient GL261 murine glioma cells stably transfected with Tdo (filled circles) or empty vector (open circles) injected subcutaneously into the flank of C57BL/6N mice was monitored using metric callipers (n = 6).

Tumour weight (g) was calculated as 0.5 × length (cm) × width2 (cm2).

e, Interferon-γ release by T cells of mice bearing subcutaneous Tdo-expressing tumours (black bar) in comparison with T cells of mice bearing Tdo-deficient tumours (white bar) after re-stimulation with glioma lysates measured by ELISpot (n = 3). f, Lysis of GL261 murine glioma cells by spleen cells of mice with Tdo-expressing GL261 tumours in comparison with those with subcutaneous Tdo-deficient GL261 tumours, measured by chromium release (n = 4). g, Quantification of the migrated distances of sh-c (open squares) and sh-TDO (filled circles) cells into a collagen matrix (n = 3, P = 0.004, 0.0005 and 0.01 for 24, 48 and 72 h, respectively). h, Clonogenic survival of sh-c (white bar) and sh-TDO (black bar) U87 cells (n = 3). i, Matrigel Boyden chamber assay of U87 glioma cells in the absence or presence of 70 μM Trp without or with 30 or 60 μM Kyn (n = 3). j, Clonogenic survival of LN-18 glioma cells in the absence or presence of 70 μM Trp without or with 30 or 60 μM Kyn (n = 3). k, Representative cranial MRIs, haematoxylin/eosin staining (H&E) and nestin staining of CD1 nu/nu mice implanted with sh-c (upper panels) or sh-TDO (lower panels) U87 glioma cells. The images are representative of two independent experiments (n = 6). l, Tumour weight of sh-c (white bars) and sh-TDO (black bars) U87 glioma cells injected subcutaneously in the flank of CD1 nu/nu mice that were treated either with anti-asialo GM1 antibody (asialo) for NK-cell depletion or control IgG (IgG) (n = 8). Error bars indicate s.e.m.

Supplementary Fig. 8b). AHR activation was unique to Kyn in a panel of Trp catabolites (Supplementary Table 1). An ethoxyresorufin-O-deethylase (EROD) assay confirmed the induction of the functional AHR target gene CYP1A1, encoding cytochrome P450 family 1, subfamily A, polypeptide 1, with an EC50 of 12.3 μM for Kyn (Supplementary Fig. 8c). Radioligand binding assays with mouse liver cytosol from Ahr-proficient and Ahr-deficient mice showed that Kyn binds to the AHR with an apparent Kd of roughly 4 μM (Fig. 3f).

Activation of the AHR and upregulation of AHR-regulated gene expression in response to Kyn were inhibited by the AHR antagonist dimethoxyflavone or knockdown of AHR (Fig. 3g and Supplementary Fig. 8g–k), indicating that Kyn is a specific agonist of the AHR. The involvement of the same or similar AHR residues in the binding to Kyn, TCDD and 3-methylcholanthrene was confirmed by the fact that dimethoxyflavone inhibited the activation of the AHR by all three ligands (Supplementary Fig. 8g–i).

The effects of TDO–derived Kyn are mediated by the AHR

The endogenous production of Kyn in glioma cells was sufficient to activate the AHR, because knockdown of TDO decreased the expression of AHR-regulated genes (Fig. 3h and Supplementary Fig. 8l–o), suggesting that...
TDO-mediated suppression of antitumour immune responses through the AHR contributes to the host effects enhancing the growth of Tdo-expressing tumours. In addition, while in Ahr-proficient mice the expression of Tdo strongly enhanced tumour growth in comparison with tumours not expressing Tdo, the same effect was observed in Ahr-deficient mice, although to a much smaller extent (Fig. 4c). Because murine glioma cells express functional AHR (Supplementary Fig. 9b–e), these results suggest that the increase in tumour growth mediated by TDO in Ahr-deficient mice is due to autocrine effects of TDO on the tumour cells themselves.

This notion is supported by the fact that Kyn failed to induce motility of human glioma cells after AHR knockout (Fig. 4e). In addition, the increase in clonogenic survival in response to Kyn was abolished in glioma cells with a knockdown of AHR (Fig. 4f).

**Figure 3** | **Kyn activates the AHR.** a, Connection of the 25 genes that were most strongly induced by Kyn treatment in U87 cells after 8 h to AHR signalling (red, upregulation; green, downregulation). b, Translocation of green fluorescent protein (GFP)-tagged AHR into the nucleus of mouse hepatoma cells, which do not degrade Trp, after 3 h treatment with 50 μM Kyn, 50 μM Trp or 1 nM TCDD (negative control; medium). c, Ratios of nuclear to cytoplasmic fluorescent intensity in cells with GFP-tagged AHR after 3 h of indicated treatment (negative control; medium; positive control: 1 nM TCDD, 50 μM Kyn). The data distribution is represented by box plots, showing the 25th and 75th centiles, respectively (P < 0.001, one-way analysis of variance on ranks, followed by Dunn’s method). d, AHR western blots of two different nuclear (N) and cytoplasmic (C) fractions each of control (lanes 1 and 2), Kyn-treated (lanes 3 and 4) and TCDD-treated (lanes 5 and 6) human LN-229 glioma cells. e, Dioxin-responsive element (DRE) chemical activated luciferase gene expression in U87 glioma cells treated with the indicated Kyn concentrations (n = 2). f, Radioligand binding assay with indicated concentrations of L-[^3]H]Kyn using mouse liver cytosol from Ahr-proficient and Ahr-deficient mice. Specific binding was calculated by subtracting the radioactivity measured in Ahr-deficient cytosol from that of Ahr-proficient cytosol (n = 4). g, CYP1A1 mRNA expression in sh-AHR LN-308 glioma cells (black bars) in comparison with controls (sh-c; white bars) treated with 100 μM Kyn. 1 nM TCDD or controls (n = 4). h, mRNA expression of AHR target genes in sh-TDO (black bars) in comparison with sh-c U87 glioma cells (white bars; n = 4) (AHR, P = 0.02; CYP1A1, P = 0.0007; IL1A, P = 0.001; IL1B, P = 0.0000006; IL6, P = 0.0047; IL8, P = 0.01; PAI-2, P = 0.0005; TIPARP, P = 0.06). Error bars indicate s.e.m.
in vivo experiments demonstrated that induced knockdown of AHR in human glioma cells inhibited tumour growth in immuno-compromised mice (Fig. 4g and Supplementary Fig. 9h), underscoring the importance of AHR signalling for the autocrine effects of Trp degradation.

**TDO-derived Kyn activates the AHR in human cancer**

Next we aimed at investigating whether TDO-derived Kyn activates the AHR in human brain tumour tissue. Indeed, TDO expression correlated with the expression of the AHR and AHR target genes in human glioma tissue (Fig. 5a–c and Supplementary Fig. 9g), indicating that constitutive expression of the AHR and AHR target genes in human glioma tissue. Indeed, TDO expression correlated with the expression of the AHR in human brain tumour tissue. Furthermore, TDO expression in glioma cells produced sufficient Kyn levels to activate the AHR. To address whether the TDO–Kyn–AHR signalling pathway is also activated in cancers other than glioma, we analysed microarray data of diverse human tumour entities. Interestingly, TDO expression correlated with the expression of the AHR target gene CYP1B1 not only in glioma (Fig. 5c) but also in B-cell lymphoma, Ewing sarcoma, bladder carcinoma, cervix carcinoma, colorectal carcinoma, lung carcinoma and ovarian carcinoma (Fig. 5d, Supplementary Fig. 10a and Supplementary Table 2). This finding indicates that the TDO–AHR pathway is not confined to brain tumours but seems to be a common trait of cancers. Analysis of the Rembrandt database revealed that the overall survival of patients with glioma (WHO grades II–IV) with high expression of TDO, the AHR or the AHR target gene CYP1B1 was reduced in comparison with patients with intermediate or low expression of these genes (Fig. 5e and Supplementary Fig. 10b). Finally, in patients with glioblastoma (WHO grade IV), the expression of the AHR targets CYP1B1, IL1B, IL6 and IL8, which are regulated by TDO-derived Kyn in glioma cells (Fig. 3h and Supplementary Fig. 5d, e), were found to predict survival independently of WHO grade (Fig. 5f and Supplementary Fig. 10c), thus further underscoring the importance of AHR activation for the malignant phenotype of gliomas. In summary, these data suggest that endogenous tumour-derived Kyn activates the AHR in an autocrine/paracrine fashion to promote tumour progression (Fig. 5g).

**Discussion**

Cancer-associated immunosuppression by Trp degradation has until now been attributed solely to the enzymatic activity of IDO in cancer cells and tumour-draining lymph nodes. IDO inhibition is therefore currently being evaluated as a therapeutic strategy in the treatment of cancer in clinical trials despite some off-target effects on human cancer cells. We show that TDO is strongly expressed in cancer and is equally capable of producing immunosuppressive Kyn. In IDO-negative glioma cells, TDO seems to be the sole determinant of constitutive Trp degradation, indicating that TDO represents a novel therapeutic target in glioma therapy. In fact, an orally available TDO inhibitor has recently been developed. Inhibition of TDO may not only restore antitumour immune responses but also act on the tumour cell intrinsic malignant phenotype, because we delineated the importance of constitutive Trp degradation to sustain the malignant phenotype of cancer by acting on the tumour cells themselves.

Emerging evidence indicates a tumour-promoting role of the AHR. AHR activation promotes clonogenicity and invasiveness of cancer cells. Transgenic mice with a constitutively active AHR spontaneously develop tumours and the repressor of the AHR (AHRR) represents a tumour suppressor in multiple human cancers. Aberrant phenotype of AHR-deficient mice points to the existence of endogenous AHR ligands. Although different endogenously produced metabolites such as arachidonic acid metabolites, bilirubin, cyclic AMP, tryptamine and 6-formylindolo[3,2-b]carbazole (FICZ) have been shown to be agonists of the AHR, their functionality has not been convincingly demonstrated in a pathophysiological context such as cancer or immune activation. The search for endogenous ligands of the AHR is therefore continuing.
We now link these two important pathways contributing to cancer progression by showing that Trp catabolism leads to AHR activation, and we provide evidence of a pathophysiological human condition that is associated with the production of sufficient amounts of a functionally relevant endogenous AHR ligand. Our results reveal a differential response of primary immune cells and transformed cancer cells to AHR-mediated signals, which is in line with various toxicological studies using the classical exogenous AHR ligands TCDD and 3-methylcholanthrene. Exposure to these xenobiotics leads to profound suppression of cellular and humoral immune responses, while also promoting carcinogenesis and inducing tumour growth. These cell-specific differences in AHR effects are likely to depend on the expression of factors differentially regulating AHR signal transduction such as the AHRR as well as cell-specific transcription factor crosstalk shaping the response to AHR activation.

It is likely that Kyn-mediated activation of the AHR is not only relevant in the setting of cancer. For instance, activation of the mouse and human AHR by agonistic ligands induces regulatory T cells. Mice with a poor-affinity AHR suffer from exacerbated autoimmune encephalomyelitis in the absence of an exogenous ligand, and Trp catabolites suppress autoimmune neuroinflammation, suggesting that activation of Trp catabolism represents an endogenous feedback loop to restrict inflammation through the AHR. In fact, exogenous Kyn is involved in the regulation of immune cells in mice through the AHR. Kyn concentrations sufficient to activate the AHR are also generated by IDO in response to inflammatory stimuli. In human cancers and how this affects survival.

METHODS SUMMARY

TDO expression was analysed by immunohistochemistry in human tumours. Its relevance for Trp degradation was determined by genetic knockdown or over-expression of TDO. Trp and Kyn were measured in cell culture supernatants, human sera and xenograft tissue by high-performance liquid chromatography. Mixed leukocyte reactions, chromium release, ELISPOT and staining of immune cells in tumour tissues were used to assess the immune effects of TDO activity. Cell cycle analysis, Matrigel and spheroid invasion assays, scratch assays, sphere formation assays and clonogenicity assays were employed to analyse the autocrine effects of TDO activity. All animal procedures followed the institutional laboratory animal research guidelines and were approved by the governmental authorities. Orthotopic implantation of human glioma cells with and without stable knockdown of TDO into CD1 nude mice, subcutaneous injection of these cells into NK-depleted or wild-type CD1 nude mice and subcutaneous injection of murine Tdo-proficient and Tdo-deficient GL261 cells into syngeneic C57BL/6N mice were performed to analyse the autocrine and paracrine effects of TDO activity.

Received 17 November 2010; accepted 17 August 2011.


Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank K. Rauschenbach, J. Reiert, S. Koch and A. Mitkoz for technical assistance, P.-N. Pfennig for help with the invasion assays, J. Blaes for help generating genetically modified cells, T. V. Lanz and I. Oezten for help with animal experiments, C. Esser for providing Ah-/- mice, M. Schwarz for providing the human DRE-luciferase construct, D. Lemke for generating GICs, K. Ochs for providing human...
umbilical-vein endothelial cell cDNA, A. Hertenstein for generation of CD4⁺ and CD8⁺ T cells, M. Betts and R. B. Russell for modelling of the binding of Kyn to the AHR, R. Koch for performing quantitative reverse transcriptase polymerase chain reaction analyses, R. Tudoran for generation of GL261 cells overexpressing murine TDO, M. Deponte for help with the radioligand binding assay, D. Schemmer for collecting and banking serum samples, W. Roth for providing tissue specimens, M. Remke for suggestions regarding data analysis, and G. Hämmerling, B. Arnold and M. Feuerer for discussions. This work was supported by grants from the Helmholtz Association (VH-NG-306) to M.P., the German Research Foundation to M.P. and W.W. (Deutsche Forschungsgemeinschaft SFB 938 TP K), the Hertie Foundation to W.W. and the Helmholtz Alliance on Systems Biology to S.T. and I.L. T.S. is supported by a DKFZ PhD Program stipend. C.A.O. is supported by a Heidelberg University Medical Faculty Postdoctoral Fellowship.

**Author Contributions** C.A.O. and U.M.L. contributed equally to this study, designed and performed experiments, analysed data and wrote the paper. F.S. and A.D. analysed protein expression by immunohistochemistry. I.T. cloned constructs and designed experiments, T.S. and I.L. performed nuclear translocation assays. M.O. performed animal experiments. T.S performed immune experiments. L.J. and M.J. performed MRI scans. C.L.M. and G.J.G. provided antibodies and designed experiments. D.S. performed and analysed EROD and DRE–luciferase assays. C.L. synthesized the TDO inhibitor. M.W. and W.W. were involved in study design and data interpretation. B.R. analysed microarray data. M.P. and C.A.O. conceptualized the study, interpreted data, designed experiments and wrote the paper. All authors discussed the results and commented on the manuscript.

**Author Information** Microarray data were deposited in the Gene Expression Omnibus repository (GEO) at www.ncbi.nlm.nih.gov/geo/ under accession number GSE25272. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to M.P. (m.platten@dkfz-heidelberg.de).