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Part III:  Building the first model 
 
The simple system below was designed in CellDesigner modelling the conversion of a 
molecule A to B and subsequently to C.  C is the degradation product of B and the 
rates of changes of both A and B are dependent upon their concentrations, as reflected 
in the differential equations below. 
 

 
Below are the equations derived from the mass action law to model the conversion of 
A to B and from B to C: 

 
 
The parameters were defined per the values below: 
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The initial results from the simulation are shown in the graph below: 
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From the graph, we can see a steady exponential decrease in the amount of A, an 
increase in the amount of B for a tenth of a second following by a decrease and 
subsequent increase in the amount of C.  This behaviour is expected from our model 
as B is a “transition” state between A and C and we are not assuming the presence of 
any reversible reactions.  After 5 seconds (for our parameter values and initial 
conditions), the amount of A and C come to a steady state value where there is no A 
or B, and only C is present.   
 
If we take a look at the production of C and what influences it, it would seem that by 
increasing both k1 and k2, this will not have any effect on the final steady state value 
of C, but will have an effect on the rate at which it reaches that steady state.  If we 
take a look at one parameter at a time, we see this effect occurring quite vividly.  As 
seen in the figure directly below, by increasing the value of k1, the eventual steady 
state value of C is unchanged (except when k1 = 0), but the rate at which it reaches 
that steady state does increase. 
 

 
 
Looking at the parameter sweep for k2, we see a similar effect in the figure directly 
below. 
 

 
 
If we want to maximize the concentration of B, we have to look at the rates at which 
B is being “produced” and “degraded”.  To maximize this, we must have a fast rate of 
production and have the degradation rate be as slow as possible.  This will make the 
“degradation” reaction the rate determining step and will limit the conversion of B to 

Increasing k2 

Increasing k1 
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C.  With a maximum limit of 10% away from our initial values, the values that will 
maximise the production of B are given below. 
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Part IV:  Synthesis-Degradation Reaction 
 
The system below was designed in CellDesigner: 

 
Below are the equations derived from the mass action law to describe the kinetics of 
the above model, where A is the molecule in question. 
 

 
 
Here, the production of A does not depend on the concentration of the source, but is 
constitutively expressed.  The degradation of A is proportional to the amount of A 
present.  Below is the simulation output with the following parameters and initial 
conditions. 
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We can see from the simulation graph above that the amount of molecule will reach a 
steady state value, but the degradation products continue to grow as expected (due to 
the continuous production of A).  If we take a look at the equations, we can put a 

quantitative value on the stead state concentration of A by setting 0][ =
dt
Ad .  We 

obtain the equilibrium value of A to be:  
2

1][
k
kAeq = .  In our case, this comes out to be 
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100 and is verified by the graph above.  Furthermore, we can allow the source to be 
zero because the production of the molecule (yellow line) is not dependent upon the 
concentration of the source.  Here, it is constitutively expressed and reaches steady 
state after about 300 seconds. 
 
Using the parameter scan, we can see that as we increase k1, the steady state value of 
A will increase, but increasing the value of k2, will decrease the value of the steady 
state concentration of A.  Below, we first show the effect of k1 in the range 0 to 10 
with interval 1. 

 
 
And below we show the effect of increase k2 in the range 0 to 0.1 with interval 0.01.  
If we do not allow for degradation, A will continually be produced with a linear 
relationship leading to the red line below.  If degradation is allowed for, a dynamic 
equilibrium is set up between the rate of production and degradation of molecule A, 
and the amount of A reaches a steady state being determined by the ratio of k1 and k2.   
 

 
 
The analytical solution to the differential equation was obtained from matlab and is 
displayed below with the initial condition A(0) = 0. 
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Now if we consider k1 = 0, we are left with the equation below: 

][][
2 Ak

dt
Ad =  

 
We can also solve this equation analytically to give the solution to the first order 
reaction whose differential equation is above. 

tkeAtA 2
0][)]([ −=  

 
The half-life of the species A is the time it takes for the remaining concentration to 
decrease by half.  This time is given by the equation below ([A](t) = (½)A0). 

2
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t =  

 
We can visualize this on CellDesigner by altering the parameters and the initial 
conditions where A0 is not equal to 0.  For our values, k2 = 0.01, so the half-life is 
approximately 69 s, which is seen on the graph below as the time the graph takes to 
reach the amount of 1.5 (or also the time it takes the amount to decrease from 1.5 to 
0.75).   
 

 
 
Part V:  Michaelis-Menten Kinetics 
 
The model below was designed in CellDesigner: 

 
The following kinetic rate laws were derived from this model: 
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The kinetic rate laws that were used are shown below: 
 
 Substrate + Enzyme Enzyme Complex:   s*e*k1 
 Enzyme Complex  Substrate + Enzyme:   es*k2 
 Enzyme Complex  Product + Enzyme:  es*k3 
 Product + Enzyme  Enzyme Complex:  p*e*k4 
 
The following parameters and initial conditions were used in the model: 
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The results of the simulation were shown below.  As is seen, all the variables achieve 
a steady-state concentration after a long period of time (about 60 sec).  Initially, there 
is a fast drop in substrate and enzyme levels as they are bound to the enzyme very 
quickly.  This causes a spike in the enzyme-substrate complex amount.  As product 
begins to form, the enzyme-substrate complex amount decreases and reaches a steady 
level, while free enzyme also increases again as it is not saturated.  It can also be seen 
that all of the concentrations reach a steady state after about 200 seconds as expected, 
but in the transient state, especially at very short times, it is not possible to assume 
that the reaction will be at steady state. 
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Also, we can note that the concentrations of the substrate and product are in a 
dynamic equilibrium with each other since reversible reactions are allowed in the 
model.   
 
Let us investigate the Michaelis-Menten approximation, where we make the following 
assumptions: 

1) That the steady state approximation applies and the concentration of the 

enzyme complex remains constant:  0][ =
dt
ESd .  It is important to note that 

this approximation only holds at long enough time scales.  From the above 
graph where we modelled the system individually with both forward and 
reverse rates, it was seen that steady state is not achieved until 200 seconds.   

2) The reverse reaction of product and enzyme to enzyme complex does not take 
place:  04 =k .  Again, this is a simplification that we can make to help our 
analysis, but is not necessarily correct for all enzymes.  For some enzymes, it 
is almost impossible to ensure that the reaction goes to completion and the 
product and substrate are usually in a dynamic equilibrium.  This dynamic 
equilibrium can be seen in the previous model where the substrate 
concentration does not go to zero.  Taking this assumption allows for the 
concentration of the substrate to go to zero, which is acceptable for some 
enzymatic reactions, but not plausible for others. 

 
We can model the system with the following equations: 
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From the first and third equations, we can see that 0][][ =+
dt
Ed

dt
ESd , and we can say 

that the total enzyme concentration [E0] = [ES] + [E].   
 
Also from the third equation and our steady state assumption, we can define the 

Michaelis-Menten constant, km as follows:  
][
]][[
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= [ES] + [E], we obtain that ( ) ][][][][ 0 SESEESkm +=  and rearrange to give 
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Substituting into the fourth equation, we obtain 
][
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m +
== .  We can 

define now ][ 03max Ekv =  to obtain the general Michaelis-Menten equation form:   
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In CellDesigner, we can model this system as per the diagram below. 

 
Here, we only have one kinetic law describing the production of the product using the 
Michaelis-Menten equation. 

Kinetic Law used:  
][
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m +
=  , where vmax and km are defined per the 

original parameters k1, k2, k3, and [E0] above.   
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When simulated, this produces the graph below. 
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If we compare the above graph to the one produced when not making any 
assumptions, we can see that the concentration of the substrate does go to zero and 
there is a constant enzyme concentration (not seen in the previous model).  
Furthermore, the steady state concentration of product and substrate is close, but not 
the same as the predicted values in the previous model.  This is probably because we 
are assuming here that all the substrate can be converted to product, but in the 
previous model, a dynamic equilibrium was set up between the substrate, enzyme 
complex, and formation of product.  No equilibrium is present here and after a certain 
period of time, only product is present in the solution.   
 
In the Michaelis-Menten model, we also assume that the enzyme complex 
concentration does not change over time.  We can see in the previous model that this 
is not exactly the case, especially at the beginning of the reaction when free enzyme is 
suddenly bound to reactants.  Furthermore, we can see that the enzyme complex 
concentration decreases over time to reach the dynamic equilibrium, an effect which 
is assumed not to happen in the Michaelis-Menten model.   
 
Overall, the Michaelis-Menten model is a reasonably good model to describe enzyme 
kinetics, although it is not perfect.  To a first approximation, it is relatively good and 
it is a way of reducing a four-dimensional model to a one-dimensional model that is 
straight-forward and easy to understand.  With advances in computing, equation 
reduction might not be necessary any longer, but is still desired in order to simplify 
analysis of complicated mathematical models. 


