Lotka-Volterra Equation Analysis
Aim

· To have a basic understanding of the Lotka-Volterra (LV) Equation on how it resulted in a unstable oscillation

· To study to the key parameters for their effects on the amplitude and the frequency of output oscillation

· Further modify the LV equation to model our real system

· Propose a set of realistic parameters which will achieve the system design aim

LV Equation
This is an equation which models the prey-predator behaviours. It consists of two differential equations: 

dX/dt= aX - bXY --------------(1)

dY/dt= cXY - dY --------------(2)

X is the number (concentration) of the preys, whereas Y represents the number of the predators. The four key parameters:
“a” – the exponential growth rate of X;

“b” – the rate of X is killing by Y;

“c” – the growth rate of Y by chances of killing X

“d” – the exponential death rate of Y;
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The key futures of this equation are the preys have an exponential growth, and its death is only caused by predators. Predators’ growth is depending on its prey, and it has its unique half-life to die. This system is too ideal, and often, the death rate of prey will be included by adding “-eX2” into the equation (1). However, depends on the aiming accuracy of our modelling, if the death rate of X is too small, we could ignore it in our equation. In some modelling, the parameters “b” and “c” are treated the same, i.e. a single death of X will result in one birth of Y, and “b” or “c” is just the encountering rate of X and Y.
Basic Analysis

By manipulating the equations (1) and (2), we could gain some understanding of these differential equations:
See manipulation on the right.
We could see that equation (3) equals to a constant (this depends on the initial condition of X and Y), this means that the plot of Y against X will be a closed encirclement; this explains why there is an oscillation.
Stationary Point(1)
When the system reaches equilibrium, i.e. the rate of change is zero. From equations (1) and (2) by setting dX/dt=0 and dY/dt=0, we could get aX – bXY = 0 and cXY – dY = 0. The solutions to these set of equations will be (X,Y) = (d/c, a/b) or (0,0) (trivial). Combined with the result from the basic analysis, the system will have a tendency to go to stationary point; any encirclement will be around the stationary point. The size of the encirclement depends on how far the initial conditions X and Y is away from the stationary point, and the shape of encirclement is defined by the four parameters in equation (1) and (2).
Uses of Jacobian Matrix can further help us define whether the stationary point is stable, in order to have desirable oscillation, we will need our stationary point to be unstable.
Vector field representation(2)
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From the graph on the right, we could see the spiral trend towards the stationary point. Each vector field in a single grid is determined numerically, and it is related to the four parameters. There is an online applet we could use to analysis the effect of initial concentration. This would be a handy tool; however, in real life the time for the oscillations to die down could be very long. By the time they were supposed to die down something could get them going again. In the approximation this aspect may not be reproduced.

Cell designer (3)
[image: image10.png]


Cell designer is an effective visual tool of a dynamic system. We could create our model through blocks and arrows governed by some biological mathematics laws. The output will be directly a graph shown at the right. It is very direct and effective; we could also play with the parameters to see some visual trend of how the amplitude and frequency changes with respect to change of parameters. However, without the understanding of how the programme actually works, the programme often fails its calculation tasks when we play with certain sets parameters. It will jam and use the entire computer’s memory, and fail to terminate itself. This is disastrous and demoralising to our analysis. This is probably due to the fact that LV model is a very unstable system, or chaos system in terms of mathematics. Furthermore, our aim is being able to control the amplitude and frequency of output waves. We need a quantitative analysis about how much the parameters could affect our system. Hence, cell designer is not very effective for this objective; it could only be useful when we want to check which set of parameters will result in oscillation.

Control modelling (4)
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Just like cell designer, we simply everything into blocks. In engineering, we also like to simply every mathematical function into blocks with signal input. By using control modelling technique, this could potentially lead us to a well studied control theory, which might help us to control our system effectively. On the other hand, this is also a simplification step of our complex model. Thanks to simulink, a tool box of Matlab, we are able to create control models, and analysis them quantitatively. The figure below is the direct representation of LV model:
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For illustration purpose, we will name the constant and gain in upper plane C1 and G1, and lower plane will be C2 and G2. From the diagram, we could see that it is quite symmetrical, which is similar to our LV equations. The upper plane output is X, the prey; the lower plane output is Y, the predator. The output of Y is feed into G1, thus G1*Y, and then in the upper plane, we could easily visual that it is subtracted by C1, hence, the output of the subtraction block is C1-G1*Y. This output is further multiply by X, i.e. the input to the integrator is X*(C1-G1*Y). The output of the integrator is X, hence X=
[image: image20.png]005

0.045

004

0035

0m

0025

002

0015

0o

0.005

50 100 150

200

250

300

350

400

450

500



X*(C1-G1*Y), or dX/dt=C1*X-G1*X*Y. Similar analysis could be applied to the lower plane, and thus we have effectively using control models to model the LV equations. Lastly, C1, G1, G2 and C2 are directly the four parameters in LV equations, namely “a”, “b”, “c”, “d” respectively in equation (1) and (2). 

In Simulink, there is a function we could use to define the initial condition of the integrator, and this is effectively the initial condition of X and Y. 
Thus, this control model has effectively modelled our LV system, and we could set parameters according to our interest. 
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direct visualisation of the oscillation which is similar to cell designer. There are also “To Workspace” blocks at the output; these blocks will collect a set of discrete samples, and allow us to use the powerful Matlab to analysis these samples. 
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The following graphs are the output oscillation of X (left) and Y (right) in the same scale:
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Initial Condition
In earlier section, we have discussed about stationary point and vector field representation, the system has a tendency to go towards the stationary point. The stationary point is clearly (X,Y) = (d/c, a/b). If we set the initial condition to be exactly the same as the stationary point, we could only get a point in the plot of Y against X, and there are not oscillations of X and Y. However, slightly change in the concentration away from the stationary point will result in oscillation. The threshold level to trigger the oscillation might be worth to study, as it will give us knowledge about what magnitude of noise could trigger the system to oscillate itself. Also further studies for threshold values for X and Y being able to reproduced are also very important
Since the contour around the stationary point is not a perfect circle or oval, hence the resulting oscillation will not be in constant amplitude and its mean value will not be the same as stationary point. If the mean value of the oscillation is our main interest, then it is worth to further study the vector field representation and find out about the contour and its behaviour.
Through changing the initial conditions, we could also observe that, if the initial condition point is too far away from stationary point, the resultant wave will result in a huge jump in value and settle to a mean value. This is not desirable for our interest, since this only means the longer settling time for the system to reach steady state of oscillation. Hence, in our future analysis, we would tune our initial conditions to a suitable range, while as the practical means to change the initial conditions of X and Y also need to be studied at the same time.
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Matlab Programming
After we have run a simulation and have a rough idea how the output wave likes, we have a set of data from “To Workspace” blocks ready for our analysis. (Data shown above)
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Next, it could be shown that these data are in fact representing the original output wave form, as the oscillation graph could be reconstructed (shown below).

However, we still cannot read much from the graph, especially about its frequency. Hence we use Discrete Fourier Transformation to help us further analysis the frequency. Fourier transformation is a powerful tool; it allows us to transform a signal from time domain to frequency domain. A simple Matlab programming has been done to Fourier transform a signal and identifies its peak frequency and amplitude. Since the system need some settling time, and there will be some DC noises at the very low frequency (near 0). Hence, for our interest, the first few points of Fourier transformation are truncated. A typical demonstration of transformation is done below.
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Through finding out the peak in the frequency domain, it will be a rough approximation of the main frequency of our system. By the identity of Fourier transformation, the peak of this frequency will be proportional to the amplitude of the oscillation. Thus if we are not interested in the exact value of the amplitude but rather the percentage change, we could use the peak value in the frequency domain instead.
The next step is to analyse how the changing of parameters will affect the output frequency and amplitude. We have used a discrete approach to this problem by varying one of the parameters while keeping the rest constant. For each change of the parameter, we store the corresponding peak frequency and amplitude, and thus plot the graphs of frequency and amplitude against parameter respectively in the hope to formulate certain trend within the system. However, we found out that by changing the other parameters, the graphs might look completely different. These probably are due to our complicated system, and the four parameters are closely related to each other. The following four graphs shows the inability to analyse by varying only one parameters
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“d” is changing from 1 to 10 with increment of 0.2 while a=10, b=100, c=10, (X,Y)=(0.3,0.1)
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“d” is changing from 1 to 10 with increment of 0.2 while a=10, b=10, c=10, (X,Y)=(0.3,0.1)

“In fact, traditionally the only big success at obtaining a complete study of the system was in dealing with linear equations with constant coefficients.” Hence, it is difficult to analyse globally for a general trend. Hence we might need to critically analysis each parameter’s sensitivity to the system. We have found a java software call “Dynetica” which have ready-built Lotka-Volterra example to plot sensitivity of each parameter.

Dynetica (5)
[image: image4.emf]
However, this simple programme can only analyse a single parameter at a time, the graph looks completely different again if we changes to other parameter, but it will be a handy tool for direct visualization like Cell Designer.
Thus two areas we could be done to improve our analysis, the first one is to try to couple more parameter into a single analysis. With the direct instinct, we could use Matlab to couple two parameters to generate 3-D images for our analysis. But this will increase the complexity and thus might be even more difficult for analysis.

The second area is to limit ourselves to a range of interest, since the past success was only dealing with constant coefficient. Thus we have to find out about the range of our real system parameters, such that our finding can be immediately applied to our system. One of our group members John C has proposed a very rough estimation of “a” & “c” should be 10-100 times larger than “d”, and “b” should be 1000 times larger than “d”. Hence we run an analysis based on d=1, a=c=10, b=100, then by varying a=10—100, b=100—1000, c= 10—100, d=1—10 respectively, with appropriate increment to analyse for 50 points.

By varying “a”:
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By varying “b”:
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By varying “c”:
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By varying “d”:
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We might be able to see some trend, but however the range we are using might be too broad, and too inaccurate, hence we need to be able to define our parameter range better, for example:

“d” is the death rate of Y, which should be governed by the half life of Y. In our system, our Y is aiiA, the proposed half life of aiiA should be 6—24 hours, hence by half-life formula, d=ln2/t1/2. Hence d should be in the range of 0.02888—0.1155. Similar analysis could be applied to other parameters to find out about range. However, unlike “d”, other parameters look more complicated, if we could not find them out from realistic bio value and sets of differential equation, then we have to find out experimentally.
Conclusion
We have gained a very basic understanding on LV equations; however it is far more complicated than it looks. We conclude our inability to analysis a single parameter without restricting other parameters. Further analysis is possible if only we could further reduce the range of parameters according to our interest.

Further improvement could be done
· Further improve our Matlab programme. Due to the complexity of this stochastic reaction, the system might become chaotic and try to solve differential steps that are going incredibly small. (This should be responsible for the crush in Cell Designer, but in Matlab, we could use ctrl+break to prevent system from crushing.) maybe some programming could be done to allow to skip these kind of steps.

· Improve UI of the Matlab programming. Once the main programme is done and verified, we should modify the programme to become user friendly, whereas we would just need to input function names and key parameters for our analysis.

· Quest for realistic range of our parameters. We should take extra efforts into defining realistic parameters, linking the parameters to the actual biological parameters, such as half-life, or growth rate. This will simplify our analysis to a greater extent.
· A complete list of differential equations that govern our systems. This will help us to find out the relationship between the real parameters and the parameters in LV equation. Most importantly, this will be an indication of how much our system is different from LV system.

· Gain a completely understanding of LV equation with restricted range of parameters, and then further modify LV equations to model our real system through synthetic biological ways. (model, testify, re-model and testify again until we could realistically model our real system.)
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