Matlab code - Model B function p_prime = model_b(time,p) p_prime = zeros(12,1); % Initial Reactants % T + sTa + sTb + sD %% Units % [p_dprime] = [mol*dm^-3*s^-1] % [s_d] = [mol*dm^-3*s^-1] % [d_d] = [s^-1] % [p_d] = [mol*dm^-3] %% Production and Degradation constants s_t = 2.3808*10^(-10); %production rate constant of T d_t = 0.000289; %degradation rate constant of T s_sTa = 1.2606*10^(-10); %production rate constant of sTa d_sTa = 0.000289; %degradation rate constant of sTa s_sTb = 1.2606*10^(-10); %production rate constant of sTb d_sTb = 0.000289; %degradation rate constant of sTb d_Tsa = 0.000289; %degradation rate constant od Tsa %d_TsTa = 1;%degradation rate constant od T-sTa d_Tsb = 0.000289; %degradation rate constant od Tsb %d_TsTb = 1;%degradation rate constant od T-sTb s_sd = 2.4998*10^(-9); %production rate constant of sD d_sd = 0.000289; %degradation rate constant of sD %d_TssD = 1;%degradation rate constant od Ts-sD d_ts = 0.000289; %degradation rate cpnstant of Ts d_d = 0.000289; %degradation rate constant of D %% Kinetic rate constants k011 = 1000; % T + sD -> T-sD k012 = 10; % T + sD <- T-sD k013 = 0.2; % T-sD -> T + D k051 = 1000; % T + sTa -> T-sTa k052 = 10; % T + sTa <- T-sTa k053 = 0.2; % T-sTa -> T + Tsa k071 = 1000; % T + sTb -> T-sTb k072 = 10; % T + sTb <- T-sTb k073 = 0.2; % T-sTb -> T + Tsb k141 = 0.4*k011; % Ts + sD -> Ts-sD k142 = 1.4*k012; % Ts + sD <- Ts-sD k143 = 0.4*k012; % Ts-sD -> Ts + D k081 = 10; % Tsa + Tsb -> Ts k082 = 0.1; % Tsa + Tsb <- Ts %% Abbreviations %p(1) = [T] = [TEV] %p(2) = [sD] = [splitDioxygenase] %p(3) = [T-sD] = [TEV-splitDioxygenase] %p(4) = [D] = [Dioxygenase] %p(5) = [sTa] = [splitTEV(a)] %p(6) = [sTb] = [splitTEV(b)] %p(7) = [Tsa] = [activated TEV(a)] %p(8) = [Tsb] = [activated TEV(b)] %p(9) = [Ts] = [activated TEV] %p(10) = [T-sTa] = [TEV-splitTEV(a)] %p(11) = [T-sTb] = [TEV-splitTEV(b)] %p(12) = [Ts-sD] = [transition state Ts-sD] %p(13) = [Tsa-Tsb] = [activated TEV(a)-activated TEV(b)] %% p_prime(1) - TEV production rate % Terms coming coming from reactions involving: T-sTa T-sD T-sTb p_prime(1) = -k011*p(1)*p(2) + (k012+k013)*p(3)-k051*p(1)*p(5) + (k052+k053)*p(10) -k071*p(1)*p(6) + (k072+k073)*p(11)+ s_t - d_t*p(1); %Production rate of TEV %% p_prime(2) - Production rate of splitDioxygenase % Terms coming coming from reactions involving: T-sD,Ts-sD p_prime(2) = -k011*p(1)*p(2) + k012*p(3)-k141*p(9)*p(2) + k142*p(12)+ s_sd - d_sd*p(2); %% p_prime(3) - Production rate of TEV-splitDioxygenase % Terms coming coming from reactions involving: T-sD p_prime(3) = k011*p(1)*p(2) - (k012+k013)*p(3); %- d_tsd*p(3); - no degradation term for transition state %% p_prime(4) - Production rate of Dioxygenase % Terms coming coming from reactions involving: T-sD Ts-sD p_prime(4) = k013*p(3)+ k143*p(12) - d_d*p(4); %% p_prime(5) - Production rate of sTa % Terms coming coming from reactions involving: T-sTa p_prime(5) = -k051*p(1)*p(5) + k052*p(10) + s_sTa - d_sTa*p(5); %% p_prime(6) - Production rate of sTb % Terms coming coming from reactions involving: T-sTb p_prime(6) = -k071*p(1)*p(6) + k072*p(11) + s_sTb - d_sTb*p(6); %% p_prime(7) - Production rate of Tsa % Terms coming coming from reactions involving: T-sTa Tsa-Tsb p_prime(7) = k053*p(10)-k081*p(7)*p(8) + k082*p(9) - d_Tsa*p(7); %% p_prime(8) - Production rate of Tsb % Terms coming coming from reactions involving: T-sTb Tsa-Tsb p_prime(8) = k073*p(11) -k081*p(7)*p(8) + k082*p(9)- d_Tsb*p(8); %% p_prime(9) - Production rate of activated TEV [Ts] % Terms coming coming from reactions involving: Tsa-Tsb p_prime(9) = k081*p(7)*p(8) - k082*p(9) -k141*p(9)*p(2) + (k142+k143)*p(12) - d_ts*p(9); %% p_prime(10) - Production rate of TEV-splitTEV(a) [T-sTa] % Terms coming coming from reactions involving: T-sTa p_prime(10) = k051*p(1)*p(5) - (k052+k053)*p(10); % - d_TsTa*p(10) no degradation term for transition state %% p_prime(11) - Production rate of TEV-splitTEV(b) [T-sTb] % Terms coming coming from reactions involving: T-sTb p_prime(11) = k071*p(1)*p(6) - (k072+k073)*p(11); % - d_TsTb*p(11) no degradation term for transition state %% p_prime(12) - Production rate of transition state Ts-sD[Ts-sD] % Terms coming coming from reactions involving: Ts-sD p_prime(12) = k141*p(9)*p(2) - (k142+k143)*p(12); % - d_TssD*p(12) no degradation term for transition state %% p_prime(13) - Production rate of activated TEV(a)-activated TEV(b) [Tsa-Tsb] % This reaction is not ensymatic -> This Ttransition State doers not exist %% 1) T+sTa+sTb+sD <-> T-sD -> T+D+sTa+sTb %%Reaction constants %k011 = 1; %k012 = 1; %k013 = 1; %%Production and degradation rate constants %s_t = 1; %production rate constant of TEV %d_t = 1; %degradation rate constant of TEV %s_sd = 1; %production rate constant of splitDioxygenase %d_sd = 1; %degradation rate constant od splitDioxygenase %d_tsd = 1; %degradation rate constant of TEV-splitDioxygenase %d_d = 1; %degradation rate constant of Dioxygenase %Equations %p_prime(1) = -k011*p(1)*p(2) + (k012+k013)*p(3) + s_t - d_t*p(1); %Production rate of TEV %p_prime(2) = -k011*p(1)*p(2) + k012*p(3)+ s_sd - d_sd*p(2); %Production rate of splitDioxygenase %p_prime(3) = k011*p(1)*p(2) - (k012+k013)*p(3) - d_tsd*p(3); %Production rate of TEV-splitDioxygenase %p_prime(4) = k013*p(3) - d_d*p(4); %Production rate of Dioxygenase %% 2) T+D+sTa+sTb <-> T-sTa -> T+Tsa+D+sTb %Reaction constants %k021 = 1; %k022 = 1; %k023 = 1; %Production and degradation rate constants %d_sta = 1; %degradation rate constant of splitTEV(a) %d_tsta = 1; %degradation rate constant of TEV-splitTEV(a) %d_tsa = 1; %degradation rate constant of activated TEV(a) %Equations %p_prime(1) = -k021*p(1)*p(5) + (k022+k023)*p(10) + s_t - d_t*p(1); %Production rate of TEV %p_prime(5) = -k021*p(1)*p(5) + k022*p(10) - d_sta*p(5); %Production rate of splitTEV(a) %p_prime(10) = k021*p(1)*p(5) - (k022+k023)*p(10) - d_tsta*p(10); %Production rate of TEV-splitTEV(a) %p_prime(7) = k023*p(10) - d_tsa*p(7); %Production rate of activated TEV(a) %% 3) T+D+Tsa+sTb <-> T-sTb -> T+Tsb+Tsa+D %Reaction constants %k031 = 1; %k032 = 1; %k033 = 1; %%Production and degradation rate constants %d_stb = 1; %degradation rate constant of splitTEV(b) %d_tstb = 1; %degradation rate constant of TEV-splitTEV(b) %d_tsb = 1; %degradation rate constant of activated TEV(b) %%Equations %p_prime(1) = -k031*p(1)*p(6) + (k032+k033)*p(11) + s_t - d_t*p(1); %Production rate of TEV %p_prime(6) = -k031*p(1)*p(6) + k032*p(11) - d_stb*p(6); %Production rate of splitTEV(b) %p_prime(11) = k031*p(1)*p(6) - (k032+k033)*p(11) - d_tstb*p(11); %Production rate of TEV-splitTEV(b) %p_prime(8) = k033*p(11) - d_tsb*p(8); %Production rate of activated TEV(b)% %% 4) T+Tsa+Tsb+D <-> Tsa-Tsb -> Ts+T+D % Note that it's actually: Tsa + Tsb <-> Ts %Reaction constants %k081 = 1; %k082 = 1; %Production rate of Tsa %p_prime(7) = -k081*p(7)*p(8) + k082*p(9) - d_Tsa*p(7); %Production rate of Tsb %p_prime(8) = -k081*p(7)*p(8) + k082*p(9) - d_Tsa*p(8); %Production rate of Ts %p_prime(9) = k081*p(7)*p(8) - k082*p(9) - d_ts*p(9); %% 5) T + sTa + sTb + sD -- T-sTa --> T + Tsa + sTb + sD %Reaction constants %k051 = 1; %k052 = 1; %k053 = 1; %Production rate of sTa %p_prime(5) = -k051*p(1)*p(5) + k052*p(10) + s_sTa - d_sTa*p(5); %Production rate of T %p_prime(1) = -k051*p(1)*p(5) + (k052+k053)*p(10) + s_t - d_t*p(1); %Production rate of T-sTa %p_prime(10) = k051*p(1)*p(5) - (k052+k053)*p(10) - d_TsTa*p(10); %Production rate of Tsa %p_prime(7) = k053*p(10) - d_Tsa*p(7); %% 6) T + Tsa + sTb + sD -- T-sD --> T + Tsa + sTb + D %Reaction constants %k061 = 1; %k062 = 1; %k063 = 1; %Production rate of sD %p_prime(2) = -k061*p(1)*p(2) + k062*p(3) + s_sd - d_sd*p(2); %%Production rate of T %p_prime(1) = -k061*p(1)*p(2) + (k062+k063)*p(3) + s_t - d_t*p(1); %Production rate of T-sD %p_prime(3) = k061*p(1)*p(2) - (k062+k063)*p(3) - d_tsd*p(3); %Production rate of D %p_prime(4) = k063*p(3) - d_d*p(4); %% 7) T + Tsa + sTb + D -- T-sTb --> T + Tsa + Tsb + D %Reaction constants %k071 = 1; %k072 = 1; %k073 = 1; %Production rate of sTb %p_prime(6) = -k071*p(1)*p(6) + k072*p(11) + s_sTb - d_sTb*p(6); %Production rate of T %p_prime(1) = -k071*p(1)*p(6) + (k072+k073)*p(11) + s_t - d_t*p(1); %Production rate of T-sTb %p_prime(11) = k071*p(1)*p(6) - (k072+k073)*p(11) - d_TsTb*p(11); %Production rate of Tsb %p_prime(8) = k073*p(11) - d_Tsb*p(8); %% 8) T + Tsa + Tsb + D -- Tsa-Tsb --> T + Ts + D % Note that it's actually: Tsa + Tsb <-> Ts %Reaction constants %k081 = 1; %k082 = 1; %Production rate of Tsa %p_prime(7) = -k081*p(7)*p(8) + k082*p(9) - d_Tsa*p(7); %Production rate of Tsb %p_prime(8) = -k081*p(7)*p(8) + k082*p(9) - d_Tsb*p(8); %Production rate of Ts %p_prime(9) = k081*p(7)*p(8) - k082*p(9) - d_Ts*p(9); %% 9) T + sTa + sTb + sD -- T-sTb --> T + Tsb + sTa + sD %Reaction constants %k091 = 1; %k092 = 1; %k093 = 1; %Production rate of sTb %p_prime(6) = -k091*p(1)*p(6) + k092*p(11) + s_sTb - d_sTb*p(6); %Production rate of T %p_prime(1) = -k091*p(1)*p(6) + (k092+k093)*p(11) + s_t - d_t*p(1); %Production rate of T-sTb %p_prime(11) = k091*p(1)*p(6) - (k092+k093)*p(11) - d_TsTb*p(11); %Production rate of Tsb %p_prime(8) = k093*p(11) - d_Tsb*p(8); %% 10) T + Tsb + sTa + sD -- T-sD --> T + Tsb + sTa + D %Reaction constants %k101 = 1; %k102 = 1; %k103 = 1; %Production rate of sD %p_prime(2) = -k101*p(1)*p(2) + k102*p(3) + s_sd - d_sd*p(2); %%Production rate of T %p_prime(1) = -k101*p(1)*p(2) + (k102+k103)*p(3) + s_t - d_t*p(1); %Production rate of T-sD %p_prime(3) = k101*p(1)*p(2) - (k102+k103)*p(3) - d_tsd*p(3); %Production rate of D %p_prime(4) = k103*p(3) - d_d*p(4); %% 11) T + Tsb + sTa + D -- T-sTa --> T + Tsb + Tsa + D %Reaction constants %k051 = 1; %k052 = 1; %k053 = 1; %Production rate of sTa %p_prime(5) = -k051*p(1)*p(5) + k052*p(10) + s_sTa - d_sTa*p(5); %Production rate of T %p_prime(1) = -k051*p(1)*p(5) + (k052+k053)*p(10) + s_t - d_t*p(1); %Production rate of T-sTa %p_prime(10) = k051*p(1)*p(5) - (k052+k053)*p(10) - d_TsTa*p(10); %Production rate of Tsa %p_prime(7) = k053*p(10) - d_Tsa*p(7); %% 12) T + Tsb + Tsa + D -- Tsa-Tsb --> T + Ts + D % Note that it's actually: Tsa + Tsb <-> Ts %Reaction constants %k081 = 1; %k082 = 1; %Production rate of Tsa %p_prime(7) = -k081*p(7)*p(8) + k082*p(9) - d_Tsa*p(7); %Production rate of Tsb %p_prime(8) = -k081*p(7)*p(8) + k082*p(9) - d_Tsa*p(8); %Production rate of Ts %p_prime(9) = k081*p(7)*p(8) - k082*p(9) - d_ts*p(9); %% 13) T + sTa + sTb + sD -- T-sTa --> T + Tsa + sTb + sD %Reaction constants %k051 = 1; %k052 = 1; %k053 = 1; %Production rate of sTa %p_prime(5) = -k051*p(1)*p(5) + k052*p(10) + s_sTa - d_sTa*p(5); %Production rate of T %p_prime(1) = -k051*p(1)*p(5) + (k052+k053)*p(10) + s_t - d_t*p(1); %Production rate of T-sTa %p_prime(10) = k051*p(1)*p(5) - (k052+k053)*p(10) - d_TsTa*p(10); %Production rate of Tsa %p_prime(7) = k053*p(10) - d_Tsa*p(7); %% 14) Ts + T + sD -- Ts-sD --> Ts + T + D %Reaction constants %k141 = 1; %k142 = 1; %k143 = 1; %Production rate of sD %p_prime(2) = -k141*p(9)*p(2) + k142*p(12) + s_sd - d_sd*p(2); %Production rate of Ts %p_prime(9) = -k141*p(9)*p(2) + (k142+k143)*p(12) - d_ts*p(9); %Production rate of Ts-sD %p_prime(12) = k141*p(9)*p(2) - (k142+k143)*p(12) - d_TsTb*p(12); %Production rate of D %p_prime(4) = k143*p(12) - d_d*p(4); end time = 0:0.1:20; [time,p] = ode45(@model_b,time,[0 1 0 0 0 0 0 0 0 0 0 0]); figure subplot(3,2,1), plot(time,p(:,1)) title('Production of TEV') xlabel('time [s]') ylabel('concentration') subplot(3,2,2), plot(time,p(:,5)) title('Production of splitTEV(a)') xlabel('time [s]') ylabel('concentration') subplot(3,2,3), plot(time,p(:,7)) title('Production of activated TEV(a') xlabel('time [s]') ylabel('concentration') subplot(3,2,4), plot(time,p(:,9)) title('Production of activated TEV (TEVs)') xlabel('time [s]') ylabel('concentration') subplot(3,2,5), plot(time,p(:,2)) title('Production of splitDioxygenase') xlabel('time [s]') ylabel('concentration') subplot(3,2,6), plot(time,p(:,4)) title('Production of Dioxygenase') xlabel('time [s]') ylabel('concentration')