1. Contrast enhancement

[image: image1.jpg]
1) contrast enhancement using ‘imadjust’ function.

2) contrast enhancement using ‘histeq’ function

2. Low pass filtering

[image: image2.emf]Original Image

Low Pass using convn

Imfilter

1) Lowpass filtering using convolution

Convolve the original image with A matrix. This process takes an average of surrounding 9 pixels and replace the pixcel value with an average value.

[image: image3.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

1

1

1

1

1

1

1

1

9

1

A

2) Lowpass filtering using ‘imfilter’
3. Median Filtering
[image: image4.emf]Spiky actin 1Median FilteredLow Pass filtered

Spiky actin 2Average of actin 1 & 2

Comparing pixels between two image

Salt and pepper noise in the spiky actin image can be removed by using median filter. Median filter replaces the pixel value with the median value. Usually, the salt and pepper noise has very high intensity value compared to the surrounding pixel value. So the low pass filter just smears the noise to the surrounding area. But in general the median will replace a noisy value with one closer to its surroundings and effectively get rid of the salt and pepper noise. If we have two pictures taken one after the other (spiky_actin1.tif , spiky_actin2.tif), we can compare the pixel value of the two pictures at the same pixel position and if one of them has higher intensity value than the other, we replace the higher pixel value with the lower pixel value. The result is shown in the lower right corner. This image can still have spikes if both image have spikes at the same position. So median filter is applied and we can get rid of all the spikes.
[image: image5.emf]Comparing pixels between two image with Median filter

4. Segmentation

[image: image6.emf]actin fiber

Segmentation with threshold 80/255

[image: image7.emf]CytoD treated actin fiber

Segmentation with threshold 80/255

Segmentation is the operation of portioning an image into separate objects. It can be simply done by choosing the threshold value and making pixel value white if its gray level is greater than threshold or making pixel value black if its gray level is smaller than threshold. One of the method of finding optimal threshold value is the Otsu’s method, which chooses the threshold to minimize the intraclass variance of the thresholded black and white pixels.

[image: image8.emf]Canny edge detection

Quantitative measurement of ‘fiberness’ of actin

One way of quantitatively measuring the fiberness of the actin is using the fractal dimension. Fraction dimension is defined as
Fractal dimension = log(number of self-similar pieces)/log(magnification factor)

For example, point has a fractal dimension of 0 , lines has a fractal dimension of 1, square has a fractal dimension of 2, and cube has a fractal dimension of 3. Normal actin fiber is more similar to line and CytoD treated cell’s actin is similar to point. So the Normal actin has higher fractal dimension than CytoD treated cell’s actin.
5. Magnification difference
[image: image9.emf]High MagnificationLow Magnification

[image: image10.emf]Edge of HighMagEdge of LowMag

Simply apply edge finding filter to both image and calculate the period of the periodic lines.
To find the edge, we applied a ‘canny’ edge filter. Period of the edge in high magnification image is about 60 pixels and the period of edge in low magnification image is 10 pixels. So the magnification difference is 6.
6. Periodic Noise
Unlike salt and pepper noise which can be filtered using spatial filtering techniques, periodic noise requires the use of frequency domain filtering.

Some useful commands for the Fourier Transforms in Matlab are as follows.

fft, takes the DFT of a vector

ifft, takes the inverse DFT of a vector

fft2, takes the DFT of a matrix

ifft2, takes the inverse DFT of a matrix

fftshift, shifts a transform to make center as the low frequency and edge as a high frequency

Typically, removing noise in frequency domain is first to take the Fourier transform of the noisy image and inspect where the noise frequencies are. Then, multiply the Fourier transform of the original image with the filter where the components of filter have all one except those regions where the noise frequency components are. Noise frequency can be easily identified by using the fact that the orientation of the noise frequencies and that of the Fourier transform of the noise is the same. Filtered image in frequency domain can be transformed to the image in spatial domain with inverse Fourier transform.

There are some tricks when you show either the result of fft or ifft. The results of the either fft or ifft are complex numbers. So take the absolute value of fft or ifft, which is usually double data type. Convert it to unsigned integer 8 bit data before putting it to the ‘imshow’ using ‘mat2gray’. If you want to keep double data type, normalize it by dividing the image matrix with the maximum of the image matrix.

 Sometimes, the DC coefficient is generally very much larger than all other values and the low magnitude frequency component is not so well visible. In that case, use the y = log(1+ x) transform to stretch out the values.
First, we take the Fourier transform of the Noise. The position of the noise frequency components can be located using ‘pixval on’
[image: image11.emf]NoiseFFT of Noise

Low noise
[image: image12.emf]Low noiseFFT of low noise

Notch filtered FFTInvere FFT

High noise
[image: image13.emf]High noiseFFT of high noise

Notch filtered FFTInvere FFT

Noisy Ecoli

[image: image14.emf]Noisy EcoliFFT

Notch filtered FFTInvere FFT

7. Tracking bead using centroid method
First read the data into mov structure. Since CCD camera we are going to use in the fluorescence microscope module records true color image with 8bits of RGB, we need only cdata field. The cdata field has Height-by-width-by-3 array and we need only one of the layer since all three layer has the same values.
mov=aviread('beadtest.avi',k); % read k-th frame of avi file

frame=mov.cdata; % put cdata field into frame matrix

After displaying the A matrix using ‘imshow’ with ‘pixel on’ find the bead to track. When you select the bead, make sure that you have enough size of rectangle to include all the movement of the bead and have only one bead in that area.

A = double(frame(130:170,370:410,1));
% put the area of interest into J matrix and convert to double for further analysis

Usually there are some background noise. To get rid of the background noise set the threshold level and make A matrix element to zero if its intensity value is smaller than the threshold level.

Threshold = 10;
ThresholdMtx = Threshold .* ones(size(A,1), size(A,2));
BinaryMtx = (A > ThresholdMtx);
LabeledA = BinaryMtx.*A;
Now calculate the centroid in the LabeledA matrix. Centroid of bead intensity can be calculated as follows.

[image: image15.wmf]å

å

×

=

j

i

j

i

j

i

I

j

i

x

j

i

I

Xc

,

,

)

,

(

)

,

(

)

,

(

,
[image: image16.wmf]å

å

×

=

j

i

j

i

j

i

I

j

i

y

j

i

I

Yc

,

,

)

,

(

)

,

(

)

,

(

xsum = 0; ysum = 0;
for p = 1: size(A,1) % row: y-coordinate
 for q = 1: size(A,2) % column: x-cooridinate
 xsum = xsum + q*LabeledA(p,q);
 ysum = ysum + p*LabeledA(p,q);
 end
end
xc = xsum/sum(sum(LabeledA));
yc = ysum/sum(sum(LabeledA));
Now repeat these process for the whole frames. The number of the frame of avi file can be accessed using ‘aviinfo’.
info = aviinfo('beadtest.avi');
info.NumFrames % Number of avi movie frame

_1224105987.unknown

_1224106162.unknown

_1224012502.unknown

