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Lecture 1:
Energy and Global Warming

MCB 113
13 March 2007

Note:  Some of the material in this talk was donated by Chris Somerville.

Mean Global Energy Consumption, 1998
(Total 12.8 TW)
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Consumption of Energy Increased 
by 85% between 1970 and 1999
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World marketed energy use by fuel type

Source:  Energy Information Administration

Net Petroleum Imports as a Percent of 
U.S. Petroleum Consumption
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Hubbert Peak Theory for crude oil 
production

World Oil Production

Note:  NGL = Natural Gas Liquids
Source: info.energyscenariosireland.com

Billions of barrels per year
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World Oil Production

Historical Price of Oil 
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N. Lewis, Caltech

Atmospheric CO2 is rising rapidly

The world is 
warming

Source:  Ken Caldeira, Atul
Jain, and Martin Hoffert
published on "Climate 
Sensitivity Uncertainty and the 
Need for Energy Without CO2 
Emission", in the March 28, 
2003 issue of science 
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N. Lewis Caltech

CO2 release rises with per capita GDP

Carbon emissions per capita
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Predicted effects on rainfall

www.metoffice.com/research/hadleycenter

CO2 concentration, temperature, and sea level 
continue to rise long after emissions are reduced



9

CO2 neutral options 
Estimated consumption 25 TW in 2050

• Nuclear
– 1 new plant every 2 days for next 45 y

• Wind
– 4 TW worldwide (~ 2 million windmills)

• Hydro, ocean, thermal
• Photovoltaics
• Sequestration
• Biomass

The Sleipner Experiment
1 million tons/y; capacity 600 B tons

7000 such sites needed

www.agiweb.org/geotimes
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Basis for a “hydrogen economy”

Hoffert et al. Science 298,981

Why Biofuels?

• Reduce dependency on 
imports
– Strategic issues
– Balance of payments
– Economic development

• Global climate change
Imported Domestic

6.4 bbl/year
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Potential of underused renewable energy 
sources

Hydro Tides &
currents

Wind Geothermal Solar Current use
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How much would every roof contribute?

• 7x107 detached single family homes in U.S.
• ≈2000 sq ft/roof = 180 m2/home
• = 1.2x1010 m2 total roof area
• Hence can (only) supply 0.25 TW, 
≈7.5% U.S. Primary Energy Consumption

Nate Lewis, Caltech
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~160,000 km2 of photovoltaic devices 
would meet US energy needs

3.3 TW

N. Lewis, Caltech

(in the U.S. in 2002)
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How Biomass is Used for Energy

Biomass

Burn 
produce electricity

Thermochemical
conversion to 

syngas products

Biochemical
conversion to
ethanol and 
other fuels

Mature Semi-mature
(Capital intensive

ineficient)

In development

Current Bioenergy and Bioproduct Facilities

NREL
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Chemical structure of starch

http://www.scientificpsychic.com/fitness/carbohydrates1.html

http://www.ucmp.berkeley.edu/monocots/corngrainls.jpg

STARCH

Corn yield averages 4.5 tons/acre at ~$77/ton

Ethanol from Cornstarch

Source:  www.ethanol.org
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A. E.  Farrell et al., Science 311, 506 -508 (2006)    

Net energy and net greenhouse gases for 
gasoline, six studies, and three cases

A DOE Ethanol Vision
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Plants are mostly composed of sugars

Section of a pine board

3 nm

Polymerized glucose

Possible packing structures of cellulose

6(2x2) 6x6

R. Atalla, unpublished



17

Cellulose is recalcitrant to hydrolysis

NREL

Cellulase hydrolyzing cellulose

cellulose

NREL
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Scale model of a cell wall

Cellulose

Hemicellulose+ Lignin

Cellulose is occluded by other polymers
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Linocellulose to ethanol process

Conc. H 2SO4

Water

Gypsum

Water

Purified
Sugar Solution

Lignin 
Utilization

Ethanol
recovery

Fermentor

Neutralization 
Tank

Acid 
Reconcentration

Acid/Sugar 
Separation

Decrystallization
Hydrolysis

Hydrolysis

Biomass

Ethanol
dehydration

The challenge is efficient conversion

• Burning switchgrass (10 
t/ha) yields 14.6-fold 
more energy than input to 
produce*

• But, converting 
switchgrass to ethanol 
calculated to consume 
45% more energy than 
produced

Biomass

Transport

Other

Steam

Electricity

Grinding

Energy consumption

*Pimentel & Patzek, Nat Res Res 14,65 (2005)
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Linocellulose to Hydrophobe Process

Conc. H 2SO4

Water

Gypsum

Water

Purified
Sugar Solution

Lignin 
Utilization

Hydrophobe

Fermentor

Neutralization 
Tank

Acid 
Reconcentration

Acid/Sugar 
Separation

Decrystallization
Hydrolysis

Hydrolysis

Biomass 69 kt Ca, K, Mg, P
66 kt lipids, waxes
171 kt protein

Ethanol from glucose or xylose

Jeffries & Shi Adv Bioch Eng 65,118
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Conversion of sugar to alkanes

Huber et al., (2005) Science 308,1446

Relative cost factors of cellulosic ethanol

Biomass Feedstock

Feed Handling

Pretreatment / Conditioning

Saccharification and fermentation

Cellulase

Distillation and Solids 
Recovery

Wastewater Treatment

Boiler/Turbogenerator

Utilities

Storage

(0.30) (0.20) (0.10) - 0.10 0.20 0.30 0.40

Capital Recovery Charge* Raw Materials Process Electricity
Grid Electricity Total Plant Electricity Fixed Costs

33%

5%

18%

12%

9%

10%

4%

4%

4%

1%

NREL Analysis
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Cost/gallon = (Y + aX)/X

GALLONS (X)

Feedstock, energy,
Transportation, etc

capital
Cost

Y

Y1
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At 15 t/a, 300 Mgal ~ 30% of all land in 20 mile radius
1 mi x 0.5 mi x 35 ft
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Is there enough land?

Estimated net primary productivity

University of Montana

90,000 TW of energy arrives on the earths surface 
from the sun

5% of land
650 MHa

Land
29.0%

Water
70.9%

Amount of land needed for 13 TW at 1% efficiency
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>2% yield is feasible
Yield of 26.5 tons/acre observed by Young & colleagues 

in Illinois, without irrigation
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Why is photosynthetic efficiency so low?

• Visible portion of spectrum
• Active areas of plants
• Photo-inhibition

– Antenna length
• Electron transfer losses

Wes Hermann, Stanford
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Julian day 1993
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Courtesy of Steve Long, University of Illinois

Perennials have more photosynthesis

Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html
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Land Usage

Forest & 
Savannah

Cereal
4.6% Pasture & Range

23.7%

30.5%

Other crops
6.9%

Nonarable

34.4%
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Data from Worldwatch database 1996, 1997

Hectares of Grain With and Without Yield Improvements
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Limiting factors for global NPP

Baldocchi et al. 2004 SCOPE 62

Land use is fungible

• High plant productivity is equally important 
for food and energy production

• Plant productivity is a function of many 
aspects of  growth and development so a 
broad approach to knowledge creation is 
essential
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US Biomass inventory = 1.3 billion tons 

Forest
12.8%

Urban waste
2.9%

Manure
4.1%

Grains
5.2%

Crop residues
7.6%

Soy
6.2%

Wheat straw
6.1%Corn stover

19.9%

Perennial crops
35.2%

From: Billion ton Vision, DOE & USDA 2005

~ 3 tons/acre

The 1.3 Billion Ton Biomass Scenario
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Geographic distribution of biomass crops

Wright et al DOE-ORNL-EERE

Economics of Perennials are Favorable

33219352515 tonsMiscanthus     

212138**35010 tonsSwitchgrass

170193*362160 buCorn

Profit
$

Cost
$

Value 
$
@$35/t

Yield
per Acre

CROP

*USDA economic research service 2004
**50% as much fertilizer, no chemicals



30

Conclusions

• We can meet a significant proportion of our 
fuel needs from plants
– If pressed, we could meet all our needs

• Productivity of energy crops is not yet 
optimized

• The industrial processing of energy crops to 
fuels is not yet optimized

• There are no insurmountable problems to 
achieving cost-effective, carbon-neutral solar 
energy production from plants

Comments

• Energy crops are expected to be more 
environmentally benign than production 
agriculture
– Low fertilizer and chemical inputs
– Late-harvest supports biodiversity
– Mixed cultures possible
– Many species can be used


