Lecture 1: Energy and Global Warming

MCB 113 13 March 2007

Note: Some of the material in this talk was donated by Chris Somerville.

CO₂ neutral options Estimated consumption 25 TW in 2050

- Nuclear
 - 1 new plant every 2 days for next 45 y
- Wind
 - 4 TW worldwide (~ 2 million windmills)
- · Hydro, ocean, thermal
- Photovoltaics
- Sequestration
- Biomass

Why Biofuels?

- Reduce dependency on imports
 - Strategic issues
 - Balance of payments
 - Economic development
- · Global climate change

How much would every roof contribute?

- 7x10⁷ detached single family homes in U.S.
- ≈2000 sq ft/roof = 180 m²/home
- = 1.2×10^{10} m² total roof area
- Hence can (only) supply 0.25 TW,
 ≈7.5% U.S. Primary Energy Consumption

Nate Lewis, Caltech

Cellulose is recalcitrant to hydrolysis

Cellulase hydrolyzing cellulose

NREL

NREL

The challenge is efficient conversion

- Burning switchgrass (10 t/ha) yields 14.6-fold more energy than input to produce*
- But, converting switchgrass to ethanol calculated to consume 45% more energy than produced

Energy consumption

*Pimentel & Patzek, Nat Res Res 14,65 (2005)

>2% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues in Illinois, without irrigation

Why is photosynthetic efficiency so low? • Visible portion of spectrum • Active areas of plants • Photo-inhibition — Antenna length • Electron transfer losses Visible Light Only Reflection / Inactive Absorbtion — Respiration and Dark Metabolism — Respiration and Dark Metabolism — Low 100% 45.0 36.5 10.9 9.3 — Low 100% 45.0 36.0 18.0 4.5 3.0 Wes Hermann, Stanford

Courtesy of Steve Long, University of Illinois

Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html

Land use is fungible

- High plant productivity is equally important for food and energy production
- Plant productivity is a function of many aspects of growth and development so a broad approach to knowledge creation is essential

Economics of Perennials are Favorable

CROP	Yield	Value	Cost	Profit
	per Acre	\$	\$	\$
		@\$35/t		
Corn	160 bu	362	193*	170
Switchgrass	10 tons	350	138**	212
Miscanthus	15 tons	525	193	332

^{*}USDA economic research service 2004

^{**50%} as much fertilizer, no chemicals

Conclusions

- We can meet a significant proportion of our fuel needs from plants
 - If pressed, we could meet all our needs
- Productivity of energy crops is not yet optimized
- The industrial processing of energy crops to fuels is not yet optimized
- There are no insurmountable problems to achieving cost-effective, carbon-neutral solar energy production from plants

Comments

- Energy crops are expected to be more environmentally benign than production agriculture
 - Low fertilizer and chemical inputs
 - Late-harvest supports biodiversity
 - Mixed cultures possible
 - Many species can be used