20.109(F11): Laura and Shelley: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(New page: == Research Proposal == === Overview === * Here is our overview :) === Content Outline === 1. Background *Cancer and why need novel therapies and alternative drug delivery *Signaling Casc...)
 
Line 1: Line 1:
== Research Proposal ==
== Research Proposal ==
=== Overview ===
=== Overview ===
* Here is our overview :)
Recent studies have shown the importance and potential in developing inhibitors of signaling cascades involved in cancer. Although there are currently drugs on the market that are kinase inhibitors, they do not always prove effective, especially in the presence of a larger tumor. To fill this gap in therapies, we have developed a two-part proposal. Novel therapeutics need to be designed that target multiple components within a signal cascade, both upstream and downstream. Such a drug compound should then be formulated with other drugs on the market already known to efficiently inhibit certain kinase proteins. For optimal delivery, a hydrogel system with pH sensitivity will be used. Cancers resulting in large tumors are often treated surgically; after a large portion of the tumor is removed, hydrogels encapsulating the drug formulation should be inserted around the remaining parts of the tumor. Use of the hydrogel will result in higher specificity and localization of the drug therapy on the tumor. The pH of the outside of a tumor is lower than physiological pH, so pH sensitivity can be used to ensure the drug is only released on the tumor, the desired target. The gradual degration of the hydrogel allows for longer lasting time release of the drug compound with higher specificity than found in drugs orally delivered.


=== Content Outline ===
=== Content Outline ===

Revision as of 21:52, 21 November 2011

Research Proposal

Overview

Recent studies have shown the importance and potential in developing inhibitors of signaling cascades involved in cancer. Although there are currently drugs on the market that are kinase inhibitors, they do not always prove effective, especially in the presence of a larger tumor. To fill this gap in therapies, we have developed a two-part proposal. Novel therapeutics need to be designed that target multiple components within a signal cascade, both upstream and downstream. Such a drug compound should then be formulated with other drugs on the market already known to efficiently inhibit certain kinase proteins. For optimal delivery, a hydrogel system with pH sensitivity will be used. Cancers resulting in large tumors are often treated surgically; after a large portion of the tumor is removed, hydrogels encapsulating the drug formulation should be inserted around the remaining parts of the tumor. Use of the hydrogel will result in higher specificity and localization of the drug therapy on the tumor. The pH of the outside of a tumor is lower than physiological pH, so pH sensitivity can be used to ensure the drug is only released on the tumor, the desired target. The gradual degration of the hydrogel allows for longer lasting time release of the drug compound with higher specificity than found in drugs orally delivered.

Content Outline

1. Background

  • Cancer and why need novel therapies and alternative drug delivery
  • Signaling Cascades
  • Ras/Bad pathway and possible targets

2. Identifying novel compounds for further testing

  • Which library to use and screen (look at what was used for past drugs that exist that inhibit RAF (eg Sorafenib)
  • How will we screen? Affinity testing, specificity, pH stability, half life (must have very long half life – possibly look into hydrogel release resulting in conformational change to the active form of the drug)

3. Methods for testing compound

  • In Vitro Tests
    • Introduce basic signaling cascade into bacteria to see how compound affects BAD signaling (look at yeast as well?)
    • IC50, CC50, EC50
    • Run gels for protein presence (purify proteins)
    • Measure phosphorylation rates since we are working with a kinase
  • In Vivo Tests
    • Assay measuring rates of apoptosis and rate of proliferation

4. Delivery of compound – Hydrogels

  • Introduction of Hydrogels
  • pH sensitive Hydrogels
  • How long the drug can sit in there, release timing of the drug, active vs. inactive form

5. Surgical Applications

  • Insert hydrogel once majority of tumor is removed via surgical methods
  • Release of drug attacks all of remaining surfaces of tumor (tumor ideally is shallow for this to occur effectively)
  • How many are inserted? What size?

6. Future Research

  • Synthetic transporter built into the hydrogel that can be controlled by laser, gets moved to inside of tumor, then releases drug content