20.109(F11): Mod 3 Day 3 TEM

From OpenWetWare
Revision as of 19:47, 1 September 2011 by Nkuldell (talk | contribs) (→‎Protocols)
Jump to navigationJump to search


20.109(F11): Laboratory Fundamentals of Biological Engineering

Home        People        Schedule Fall 2011        Assignments        Lab Basics        OWW Basics       
DNA Engineering        System Engineering        Biomaterials Engineering              

TEM

Introduction

The Transmission Electron Microscope (TEM) achieves its remarkable resolution by “illuminating” samples using an electron beam in a vacuum rather than using a conventional light source in air. Since the electron beam passes through the sample that is being examined, the sample must be sufficiently thin and sufficiently sturdy to be hit by electrons in a vacuum. It’s important to remember that many biological materials are damaged or destroyed by the incoming electrons and that the TEM can image only the species that survive this harsh treatment. The denser parts of the sample will absorb or scatter some of the electron beam, and it’s the scattered electrons or those that pass through the sample that are focused using an electromagnetic lens. This “electron shadow” then strikes a fluorescent screen, giving rise to an image that varies in darkness according to the sample's density. For samples that are amenable to TEM, this form of examination can allow observation of angstrom-sized objects and of cellular details down to near atomic levels.
Copper TEM grid with carbon mesh, photographed at 60X magnification

Samples were applied last time to a wafer-thin "grid" and today they will be loaded into the TEM and placed under vacuum. The grid can be made of many kinds of materials. All have lines of a conductive metal, in our case copper, that disperse the electron beam and thereby help keep the sample from being blown to bits by the energy in the beam. A carbon mesh is strung between the metal lines. Once a sample has been applied to the grid, it's only the portions that come to rest on the carbon mesh can be visualized, along with any imperfections in the carbon mesh itself.


Protocols


DONE!

For next time

You should now be considering the presentation materials themselves and if you can, start working on the materials you will use to describe your idea. Reconsult the specific directions for what you'll need as well as the more general guidelines for all oral presentations.