20.109(F12) Pre-Proposal: Engineering Viral Magnetic Nanoparticles for Magnetic Hyperthermic Cancer Therapy

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Your idea)
(A sketch)
Line 39: Line 39:
Make clear what you see is the structural hole/gap in understanding or the need, and how you propose to fill in or satisfy what you've identified. You should specify your general approach (e.g. "will screen for mutants that enhance the contrast of the bacterial photography system") but do not need to think through the precise experimental details yet. Emphasize instead what results hope to collect and how they might improve the shortcomings that you've identified as interesting.
Make clear what you see is the structural hole/gap in understanding or the need, and how you propose to fill in or satisfy what you've identified. You should specify your general approach (e.g. "will screen for mutants that enhance the contrast of the bacterial photography system") but do not need to think through the precise experimental details yet. Emphasize instead what results hope to collect and how they might improve the shortcomings that you've identified as interesting.
-
== A sketch ==
+
[[Image:updated flow.png]]== A sketch ==
yaadda
yaadda

Revision as of 05:40, 29 November 2012

20.109(F12): Laboratory Fundamentals of Biological Engineering

Home        People        Schedule Fall 2012        Assignments        Lab Basics        OWW Basics       
DNA Engineering        System Engineering        Biomaterials Engineering              

Contents

Investigators

  • Coyin Oh
  • Joanna Yeh
  • T/R
  • Green

Title of Proposed Project

20.109(F12) Pre-Proposal: Engineering viral magnetic nanoparticles for magnetic hyperthermic cancer therapy

Project Summary

THREE SENTENCES ONLY.
The robot is summarising the project. Key words: magnetic nanoparticles, virus, hyperthermia.

Introduction

The field of magnetic hyperthermia has attracted a lot of attention in the past thirty years as an alternative cancer therapy method. Magnetic hyperthermia proposes the placement of magnetic nanoparticles (MNP) in tumor cells under an alternating magnetic field. Nanoparticles often have unique physical and chemical properties that can be varied based on size and shape. MNPs are no different; these nanoparticles are superparamagnetic, gaining magnetic properties in the presence of a magnetic field. As the direction of the magnetic field alternates, MNPs undergo magnetic hysteresis losses that are dissipated to local surroundings as thermal energy. Targeted sites usually are heated to temperatures between 42 and 45 C to cause cell damage or death. A main challenge to this method is the localization of MNPs to targeted tumor cells. Sometimes MNPs circulate around the bloodstream and do not reach the targeted sites as intended. At times they get internalized and absorbed by the endoplasmic reticulum system of the cells. This low efficiency of MNP transport calls for a higher applied dosage of MNPs in this form of cancer treatment. How can we concentrate MNPs within tumor cells to produce sufficient heat for complete cell apoptosis?

References:

  1. A.J. Giustini, A.A. Petryk, S.M. Cassim, J.A. Tate, I. Baker, P.J. Hoopes. Magnetic nanoparticle hyperthermia in cancer treatment. Nano LIFE 2010; 01: 17.
  2. D. Ghosh, Y. Lee, S. Thomas, A. G. Kohli, D. S. Yun, A. M. Belcher, K. A. Kelly. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 2012; 7 (10): 677–82.
  3. Add more references as deem appropriate

Your idea

Our proposed project aims to use viral magnetic nanoparticles to increase the efficacy of magnetic hyperthermia. Viral MNP complexes consist of MNPs attached to viruses that have minimal harmful effects to humans. While the medical applications of viral MNPs has been studied for over a decade now, their functions have been mostly limited to in vivo MRI imaging and targeted gene delivery. Using viral MNPs, our approach can potentially concentrate MNPs in targeted tumor cells, thereby achieving the level of heat necessary for effective cell apoptosis yet at the same time, lowering the minimum MNP dosage required for the treatment.

Our general preliminary approach involves five stages:
Stage 1: Virus Hunt We need to investigate how our selected virus (which is most likely one of the following: TMV, M13, CCMV, CPMV

Test how virus interacts with mammalian cells in vivo Screen for protein coat that binds to Fe3O4 Screen for sequence unique to targeted tumor cells Screen for protein/RNA coat that binds to this peptide sequence Ultimately, we would hope to collect results on whether viral MNPs are more effective in delivering MNPs to targeted cells compared to other MNPs.

TWO PARAGRAPHS Make clear what you see is the structural hole/gap in understanding or the need, and how you propose to fill in or satisfy what you've identified. You should specify your general approach (e.g. "will screen for mutants that enhance the contrast of the bacterial photography system") but do not need to think through the precise experimental details yet. Emphasize instead what results hope to collect and how they might improve the shortcomings that you've identified as interesting.

Image:updated flow.png== A sketch ==

yaadda
Personal tools