20.309:Recitation 092107: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 29: Line 29:
#Apply KCL at the <math>V_-</math> node
#Apply KCL at the <math>V_-</math> node
#Solve one equation for <math>V_x</math> and substitute into the other
#Solve one equation for <math>V_x</math> and substitute into the other
#Rewrite in the form of a transfer function <math>V_o / V_i</math>
#Rewrite the result in the form of a transfer function <math>V_o / V_i</math>


===The gruesome details===
===The gruesome details===


==Apply the Golden Rules==
====Apply the Golden Rules===


In the Sallen Key circuit, a wire connects <math>V_-</math> to <math>V_+</math>. Therefore, <math>V_- = V_+ = V_o</math>
In the Sallen Key circuit, a wire connects <math>V_-</math> to <math>V_+</math>. Therefore, <math>V_- = V_+ = V_o</math>. This will be a useful substitution when applying KCL.


====Apply KCL at the <math>V_x</math> node and multiply by <math>R_1 R_2</math>====
====Apply KCL at the <math>V_x</math> node>====
 
=====KCL=====
:<math>
:<math>
(V_i-V_x)/{R_1} + (V_o-V_x)/R_2 + C_1 s (V_o - V_x) = 0  
(V_i-V_x)/{R_1} + (V_o-V_x)/R_2 + C_1 s (V_o - V_x) = 0  
Line 43: Line 45:
<br/>
<br/>


=====Multiply by <math>R_1 R_2</math>=====
:<math>
:<math>
R_2(V_i-V_x) + R_1(V_o-V_x) + R_1 R_2C_1 s (V_o - V_x) = 0
R_2(V_i-V_x) + R_1(V_o-V_x) + R_1 R_2C_1 s (V_o - V_x) = 0
Line 48: Line 51:
<br/>
<br/>


====Apply KCL at the noninverting op amp input and multiply by <math>R_2</math>====
=====Gather terms=====
:<math>
R_2(V_i-V_x) + R_1(V_o-V_x) + R_1 R_2C_1 s (V_o - V_x) = 0
</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3)
<br/>
 
====Apply KCL at the <math>V_-</math> node====
 
=====KCL=====
:<math>
:<math>
(V_x-V_o)/R_2 - V_o C_2 s = 0
(V_x-V_o)/R_2 - V_o C_2 s = 0
</math>
</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3)
 
<br/>
<br/>


=====Multiply by <math>R_2</math>=====
:<math>
:<math>
V_x=V_o (1 + R_2 C_2 s)
V_x=V_o (1 + R_2 C_2 s)
</math>
</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(4)
<br/>


====Substitute expression for <math>V_x</math> into====
====Substitute for <math>V_x</math> (equation 4 into equation 2)====




</div>
</div>

Revision as of 07:44, 22 September 2007

20.309 Fall Semester 2007
Recitation Notes for 9/21/2007


Review of ideal circuit elements

Linear passive

Independent sources

Dependent sources

Nonlinear

Modeling real components with ideal elements

Modeling a battery

Modeling an op amp

Sallen Key circuit

Approach to solving the Sallen Key circuit

  1. Apply the Golden Rules
  2. Apply KCL at the [math]\displaystyle{ V_x }[/math] node
  3. Apply KCL at the [math]\displaystyle{ V_- }[/math] node
  4. Solve one equation for [math]\displaystyle{ V_x }[/math] and substitute into the other
  5. Rewrite the result in the form of a transfer function [math]\displaystyle{ V_o / V_i }[/math]

The gruesome details

=Apply the Golden Rules

In the Sallen Key circuit, a wire connects [math]\displaystyle{ V_- }[/math] to [math]\displaystyle{ V_+ }[/math]. Therefore, [math]\displaystyle{ V_- = V_+ = V_o }[/math]. This will be a useful substitution when applying KCL.

Apply KCL at the [math]\displaystyle{ V_x }[/math] node>

KCL
[math]\displaystyle{ (V_i-V_x)/{R_1} + (V_o-V_x)/R_2 + C_1 s (V_o - V_x) = 0 }[/math]      (1)


Multiply by [math]\displaystyle{ R_1 R_2 }[/math]
[math]\displaystyle{ R_2(V_i-V_x) + R_1(V_o-V_x) + R_1 R_2C_1 s (V_o - V_x) = 0 }[/math]      (2)


Gather terms
[math]\displaystyle{ R_2(V_i-V_x) + R_1(V_o-V_x) + R_1 R_2C_1 s (V_o - V_x) = 0 }[/math]      (3)


Apply KCL at the [math]\displaystyle{ V_- }[/math] node

KCL
[math]\displaystyle{ (V_x-V_o)/R_2 - V_o C_2 s = 0 }[/math]      (3)


Multiply by [math]\displaystyle{ R_2 }[/math]
[math]\displaystyle{ V_x=V_o (1 + R_2 C_2 s) }[/math]      (4)


Substitute for [math]\displaystyle{ V_x }[/math] (equation 4 into equation 2)