6.021/Notes/2006-10-13

From OpenWetWare
Revision as of 09:31, 14 November 2006 by Austin J. Che (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
  • injury potential V (when cell is broken open )is less than 0
    • V depends on extracellular concentration of potassium [math]\displaystyle{ c^o_K }[/math]
    • higher [math]\displaystyle{ c^o_K }[/math] means higher V
    • V does not depend on [math]\displaystyle{ c^o_{Na} }[/math]
  • Bernstein model(1902)
    • new concept: rest: [math]\displaystyle{ J_m=0 }[/math]
    • time to reach rest much smaller than steady state
    • [math]\displaystyle{ J_m = 0 = J_K = G_K(V_m-V_K) }[/math]
    • Thus [math]\displaystyle{ V_m=V_K }[/math]
    • membrane is selectively permeable to K and has the potential needed to counteract diffusion
  • Baker, Hodgkin, Shaw (1962), squid giant axon data
    • [math]\displaystyle{ c^i_K\uparrow\rightarrow V^o_m \downarrow }[/math], [math]\displaystyle{ c^o_K\uparrow\rightarrow V^o_m \uparrow }[/math], [math]\displaystyle{ c^o_K=c^i_K\rightarrow V^o_m\approx 0 }[/math]
    • measurements supported Bernstein model
  • Data doesn't fit exactly with Bernstein model for all cells
  • Multiple ionic species
    • [math]\displaystyle{ J_m = J_1 + J_2 \ldots J_n }[/math]
    • Define [math]\displaystyle{ V_m^o }[/math] as the membrane voltage at rest [math]\displaystyle{ J_m = 0 }[/math]
    • [math]\displaystyle{ J_m = \sum_n G_n(V_m^o-V_n) = 0 }[/math]
    • [math]\displaystyle{ \sum_n G_nV_m^o=\sum_n G_nV_n }[/math]
    • [math]\displaystyle{ G_m=\sum_n G_n }[/math]
    • [math]\displaystyle{ V_m^o = \sum_n \frac{G_n}{G_m}V_n }[/math]
      • The membrane potential is the weighted sum of Nernst potentials
    • Assume K, Na, and all other ions
    • Nernst potentials: K = -72mV, Na = +55mV, other (leakage) = -49mV
    • [math]\displaystyle{ V_m^o = -60mV }[/math]
  • But change in concentration not only changes [math]\displaystyle{ V_n }[/math], also changes [math]\displaystyle{ G_n }[/math]
  • Hodgkin-Huxley model (to be discussed in more detail later)
    • [math]\displaystyle{ \sum_n G_n(V_m^o)\cdot (V_m^o-V_n) = 0 }[/math]
  • Rest is not equilibrium
    • rest is that there's no change in charge but they doesn't imply no flux
    • The flow of sodium can compensate for the flow of K at rest