6.021/Notes/2006-11-14

From OpenWetWare
Revision as of 14:55, 14 December 2006 by Austin J. Che (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Electrodiffusion

Nernst-Planck Equation: [math]\displaystyle{ J_n = -z_nFD_n\frac{\partial c_n}{\partial x}-u_nz_n^2F^2c_n\frac{\partial\psi}{\partial x} }[/math]

Einstein's relation: [math]\displaystyle{ D_n=u_nRT }[/math]

Continuity: [math]\displaystyle{ \frac{\partial J_n}{\partial x} = -z_nF\frac{\partial c_n}{\partial t} }[/math]

Poisson's Equation: [math]\displaystyle{ \frac{\partial^2 \psi}{\partial x^2} = -\frac{1}{\epsilon}\sum_n z_nFc_n(x,t) }[/math]

Membranes

[math]\displaystyle{ J_n = G_n (V_m-V_n) }[/math]

[math]\displaystyle{ G_n = \frac{1}{\int_0^d{\frac{dx}{u_nz_n^2F^2c_n(x)}}} }[/math] (electrical conductivity)

Nernst potential: [math]\displaystyle{ V_n=\frac{RT}{z_nF}{\rm ln}\frac{c^o_n}{c^i_n} \approx \frac{60 {\rm mV}}{z_n}{\rm log}\frac{c^o_n}{c^i_n} }[/math]

Cells

[math]\displaystyle{ G_m=\sum_n G_n }[/math]

Resting membrane potential: [math]\displaystyle{ V_m^o = \sum_n \frac{G_n}{G_m}V_n }[/math]

Resting potential with active pumps: [math]\displaystyle{ V_m^o = \sum_n \frac{G_n}{G_m}V_n - \frac{1}{G_m}\sum_n J_n^a }[/math]

Core conductor model

[math]\displaystyle{ \frac{\partial I_i(z,x)}{\partial z}=-K_m(z,t) }[/math]

[math]\displaystyle{ \frac{\partial I_o(z,x)}{\partial z}=K_m(z,t)-K_e(z,t) }[/math]

[math]\displaystyle{ \frac{\partial V_i(z,t)}{\partial z}=-r_iI_i(z,t) }[/math]

[math]\displaystyle{ \frac{\partial V_o(z,t)}{\partial z}=-r_oI_o(z,t) }[/math]

THE core conductor equation: [math]\displaystyle{ \frac{\partial^2 V_m(z,t)}{\partial z^2}=(r_o+r_i)K_m(z,t)-r_oK_e(z,t) }[/math]

wave equation: [math]\displaystyle{ \frac{\partial^2 V_m(z,t)}{\partial z^2}=\frac{1}{\nu^2}\frac{\partial^2 V_m(z,t)}{\partial t^2} }[/math]

[math]\displaystyle{ \nu = \sqrt{\frac{C}{(r_o+r_i)2\pi a}} }[/math], [math]\displaystyle{ \nu = \sqrt{\frac{Ca}{2\rho}} \propto \sqrt{a} }[/math]

[math]\displaystyle{ v_o(z)=-\frac{r_o}{r_o+r_i}(v_m(z) - V_m^o) }[/math]

Hodgkin-Huxley

[math]\displaystyle{ G_{K}(V_m,t) = \overline{G_K} n^4(V_m,t) }[/math], [math]\displaystyle{ G_{Na}(V_m,t) = \overline{G_{Na}} m^3(V_m,t)h(V_m,t) }[/math]

[math]\displaystyle{ n(V_m,t) + \tau_n(V_m)\frac{dn(V_m,t)}{dt} = n_\infty(V_m) }[/math], [math]\displaystyle{ m(V_m,t) + \tau_m(V_m)\frac{dm(V_m,t)}{dt} = m_\infty(V_m) }[/math], [math]\displaystyle{ h(V_m,t) + \tau_h(V_m)\frac{dh(V_m,t)}{dt} = h_\infty(V_m) }[/math]

[math]\displaystyle{ x_\infty=\frac{\alpha_x}{\alpha_x+\beta_x}, \tau_x=\frac{1}{\alpha_x+\beta_x} }[/math]