Alcazar: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(67 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:Alcazarlab2.jpg|900px]]
[[Image:Alcazarlab_logo.jpg|900px]]
<div style="padding: 40px; color: #ffffff; width: 900px">
<div style="padding: 40px; color: #ffffff; width: 900px">
<font face="calibri" style="color:#000000" font size="3">
<font face="calibri" style="color:#000000" font size="3">
Line 7: Line 7:
{{Template:Alcazar Vertical Menu}}
{{Template:Alcazar Vertical Menu}}
</div>
</div>
<font face="calibri" style="color:#000000" font size="5">
<font face="calibri" style="color:#000000" font size="4"><br>
'''''Dear visitor,'''''<br>
<br> Welcome to the Molecular Genetics of Plant Stress Tolerance Lab (Ruben Alcazar & A.F. Tiburcio Labs) ''' at the Department of Biology, Healthcare & Environment of the University of Barcelona. <br><br>
We're a recently created joint research group that investigates the '''adaptation of plants to local environments'''. We focus on the evolutionary adaptation of plant populations to '''abiotic and biotic stresses''', which are major challenges for plant survival under the current climate change predictions. Derived from our research, we investigate ways for improving stress protection.<br>
<font face="calibri" style="color:#000000" font size="4"><br>
For a more detailed view of our research, please have a look at our [http://alcazar.openwetware.org/Research.html Research Projects] and [http://alcazar.openwetware.org/Publications.html Scientific Publications] sections. You can follow an updated list of our activities and publications in the NEWS section below. For any other enquires, do not hesitate to contact us directly.<br><br>
<font face="helvetica" style="color:#000000" font size="2">
Info currently available in the following languages: <br>
[[http://alcazar.openwetware.org EN]] [[http://alcazar_cat.openwetware.org CAT]] [[http://alcazar_es.openwetware.org ES]]
 
<br><br><br><br><br><br><br><br>
 
----
<font face="helvetica" style="color:#000001" font size="3">
 
<br>
<br>
'''1. POLYAMINE PERCEPTION AND SIGNALING'''<br> <br>
<font face="calibri" style="color:#000000" font size="4">
Our research laboratory has long-standing experience in the field of plant polyamines, for which we performed a number of omics approaches and established genetic evidence for their role in abiotic stress protection.
Our previous research pointed to interactions of polyamines with hormones and other stress-related metabolites. Our current goal is to investigate how polyamines are perceived by the plant, which early signaling components are involved, and how this is shaped by the environment.


'''''Genetics of Plant-Environment Interactions'''''<br><br>
We’re making use of background knowledge from different disciplines to gain insight into polyamine perception and signaling, for which little is known in plants. We’re making use of genetics of natural variation, reverse genetics, molecular biology and plant-microbe interactions to unravel how polyamines are sensed and how this relates to the local microbiota.
<font face="Calibri" style="color:#000000" font size="4">


''Our research is inspired in the genetics work pioneered by Maarten Koornneef and co-workers, stepwise towards evolution and ecology.''- R.A. <br>
Our final goal is to provide novel approaches for crop protection against abiotic and biotic stresses.
<font face="calibri" style="color:#000000" font size="3"><br>
Dear visitor,<br>
<br> Welcome to the webpage of the '''Alcázar Lab''' at the University of Barcelona.We study the genetic and molecular bases for the '''adaptation of plants to their local environments'''. We focus on the evolutionary adaptation of plant populations to '''abiotic and biotic stresses''', which are major challenges for plant survival. Derived from our basic research, we investigate ways for improving stress protection.<br><br>
<font face="helvetica" style="color:#000000" font size="2"><br>
For a more detailed view of our research, please have a look at our [http://alcazar.openwetware.org/Research.html Research Projects] and [http://alcazar.openwetware.org/Publications.html Scientific Publications] sections. You can follow an updated list of our activities and publications in the NEWS section below.<br>


<br><br><br>


'''2. MOLECULAR EVOLUTION OF DISEASE RESISTANCE IN PLANTS''' <br>
<font face="calibri" style="color:#000000" font size="4">
----
----
<font face="helvetica" style="color:#DBA901" font size="3">
In our lab, we make use of the extensive natural variation of [https://en.wikipedia.org/wiki/Arabidopsis_thaliana ''Arabidopsis thaliana''] populations to answer key fundamental questions:
'''CURRENT AREAS OF RESEARCH'''
 
* '''How plants adapt to local environments including the microbiota?'''
* '''How plants maintain variability of genes involved in pathogen recognition and to which extent this variability is caused by the interaction with pathogens?'''  
* '''How the environment manipulates immune responses? How this affects the above points?'''
 
 
To address these and other questions, we (and others) developed a new model for plant immunity studies based on the use of ''Arabidopsis'' immune-related incompatible hybrids. These are hybrids obtained by crosses of natural ''Arabidopsis'' accessions that exhibit constitutive activation of defense, stunted growth and sterility in the absence of pathogen challenge. Often, such phenotypes are temperature-dependent and suppressed at high temperature.
 
 
These genetic interactions might unravel molecular partners required for proper modulation of defense. Some of these cases are background-dependent and therefore, likely difficult to be observed in classical reference accessions.
 
 
Since some years, we're using the Ler / Kas-2 immune-related hybrid incompatibility as molecular model to answer some of the questions above. The Landsberg (from Gorzów Wielkopolski, Poland)/Kashmir-2 (from Kashmir mountains) incompatibility involves populations in Central Europe and Central Asia which enable to expand our analyses to population scales. We apply population genetics on top of our molecular and biochemical analyses.
 
 
Derived from our research, we attempt to provide new strategies for crop protection at medium to long-term.
 
 
----
----
<br>
'''1. Natural variation and evolution of immune resistance genes in plants.''' <br>
<font face="helvetica" style="color:#000000" font size="3"> <br>
Plant resistance to pathogens is an important field of research with direct applications and we study it from an evolutionary, population genetics and molecular view. We currently study the '''molecular bases and evolution of ''Resistance'' genes''' and other loci that condition immune activation. We do so by studying Arabidopsis natural hybrids that exhibit activation of defense and fitness loss. We explore the mechanisms that have naturally evolved in plant populations to resist against pathogens and how the immune receptor repertoire is selected and diversified. At the direct interface between plants and the environment, we study how temperature modulates some plant immune responses.<br>
<font face="helvetica" style="color:#DBA901" font size="3"><br>
'''2. Natural variation of abiotic stress tolerance and adaptation'''
<font face="helvetica" style="color:#000000" font size="3">


We investigate the molecular and genetic mechanisms underlying the naturally occurring '''tolerance to abiotic stresses in plant populations'''. We're currently studying the genetic bases for the naturally occurring variation of '''stress protective metabolites''' that condition resistance in plants.<br>
 
<br>
 
 
----
----
<font face="helvetica" style="color:#ffcc66" font size="3">  
<font face="helvetica" style="color:#000000" font size="3">  
[[Image:Announcement_alcazar.jpg |100px]] '''News and Announcements e-Board'''<br>
[[Image:Announcement_alcazar.jpg |100px]] '''News and Announcements e-Board'''<br>
<font face="calibri" style="color:#000000" font size="3"><br>
<font face="calibri" style="color:#000000" font size="3"><br>
  NEWS


 
''' ACADEMIC PRESS RELEASES'''<br>
''' PRESS RELEASES'''<br>
  [http://www.ub.edu/web/ub/en/menu_eines/noticies/2015/01/020.html? Alcázar Lab work highlighted by the University of Barcelona 20.01.15]<br>
  [http://www.ub.edu/web/ub/en/menu_eines/noticies/2015/01/020.html? Alcázar Lab work highlighted by the University of Barcelona 20.01.15]<br>
  [http://www.ub.edu/noticies/cgi/event.pl?id=62490&noticiaub=FARMACIA Rubén Alcázar research highlighted by the Faculty of Pharmacy at UB, January 2015]<br>
  [http://www.ub.edu/noticies/cgi/event.pl?id=62490&noticiaub=FARMACIA Rubén Alcázar research highlighted by the Faculty of Pharmacy at UB, January 2015]<br>
Line 53: Line 82:
----
----
<font face="calibri" style="color:#000000" font size="2">
<font face="calibri" style="color:#000000" font size="2">
Rubén Alcázar is Ramón y Cajal Researcher at the Department of Natural Products, Plant Biology and Soil Science of the [http://www.ub.edu University of Barcelona].<br>
Rubén Alcázar is Ramón y Cajal Researcher at the Department of Biology, Healthcare and Environment of the [http://www.ub.edu University of Barcelona].<br>
----
----
<br>'''Research in Alcázar Lab is supported by:'''
<br>'''Research in Alcázar Lab is supported by:'''
[[Image:Alcazar_funding.png|900px]]


<font face="calibri" style="color:#000000" font size="2"><br>
<font face="calibri" style="color:#000000" font size="2"><br>

Revision as of 12:29, 22 May 2017




Dept. Biology, Healthcare & Environment
Section of Plant Physiology
Facultat de Farmàcia, Av. Joan XXIII 27-31
08028 Barcelona, Spain

<html><a href="http://www.revolvermaps.com/?target=enlarge&i=0ewrbw4fec7"><img src="//ra.revolvermaps.com/h/m/a/0/fff600/128/40/0ewrbw4fec7.png" width="156" height="100" alt="Map" style="border:0;"></a>


Dear visitor,

Welcome to the Molecular Genetics of Plant Stress Tolerance Lab (Ruben Alcazar & A.F. Tiburcio Labs) at the Department of Biology, Healthcare & Environment of the University of Barcelona.

We're a recently created joint research group that investigates the adaptation of plants to local environments. We focus on the evolutionary adaptation of plant populations to abiotic and biotic stresses, which are major challenges for plant survival under the current climate change predictions. Derived from our research, we investigate ways for improving stress protection.

For a more detailed view of our research, please have a look at our Research Projects and Scientific Publications sections. You can follow an updated list of our activities and publications in the NEWS section below. For any other enquires, do not hesitate to contact us directly.

Info currently available in the following languages:
[EN] [CAT] [ES]











1. POLYAMINE PERCEPTION AND SIGNALING

Our research laboratory has long-standing experience in the field of plant polyamines, for which we performed a number of omics approaches and established genetic evidence for their role in abiotic stress protection.


Our previous research pointed to interactions of polyamines with hormones and other stress-related metabolites. Our current goal is to investigate how polyamines are perceived by the plant, which early signaling components are involved, and how this is shaped by the environment.


We’re making use of background knowledge from different disciplines to gain insight into polyamine perception and signaling, for which little is known in plants. We’re making use of genetics of natural variation, reverse genetics, molecular biology and plant-microbe interactions to unravel how polyamines are sensed and how this relates to the local microbiota.

Our final goal is to provide novel approaches for crop protection against abiotic and biotic stresses.


2. MOLECULAR EVOLUTION OF DISEASE RESISTANCE IN PLANTS


In our lab, we make use of the extensive natural variation of Arabidopsis thaliana populations to answer key fundamental questions:

  • How plants adapt to local environments including the microbiota?
  • How plants maintain variability of genes involved in pathogen recognition and to which extent this variability is caused by the interaction with pathogens?
  • How the environment manipulates immune responses? How this affects the above points?


To address these and other questions, we (and others) developed a new model for plant immunity studies based on the use of Arabidopsis immune-related incompatible hybrids. These are hybrids obtained by crosses of natural Arabidopsis accessions that exhibit constitutive activation of defense, stunted growth and sterility in the absence of pathogen challenge. Often, such phenotypes are temperature-dependent and suppressed at high temperature.


These genetic interactions might unravel molecular partners required for proper modulation of defense. Some of these cases are background-dependent and therefore, likely difficult to be observed in classical reference accessions.


Since some years, we're using the Ler / Kas-2 immune-related hybrid incompatibility as molecular model to answer some of the questions above. The Landsberg (from Gorzów Wielkopolski, Poland)/Kashmir-2 (from Kashmir mountains) incompatibility involves populations in Central Europe and Central Asia which enable to expand our analyses to population scales. We apply population genetics on top of our molecular and biochemical analyses.


Derived from our research, we attempt to provide new strategies for crop protection at medium to long-term.






News and Announcements e-Board

 NEWS

ACADEMIC PRESS RELEASES

Alcázar Lab work highlighted by the University of Barcelona 20.01.15
Rubén Alcázar research highlighted by the Faculty of Pharmacy at UB, January 2015
Alcázar Lab work highlighted by the Bulletin of the Spanish Society of Plant Physiology, SEFV. January, 2015
PLoS Genet 2014 highlight by Max Planck Institute, Cologne. 11.12.14.
Arabidopsis semidwarfs: the green revolution in nature 02.12.2013. University of Barcelona.
Hybrid plants with over-reactive immune system 17.11.2010. Max Planck Society.



Rubén Alcázar is Ramón y Cajal Researcher at the Department of Biology, Healthcare and Environment of the University of Barcelona.



Research in Alcázar Lab is supported by:


  • 7th Framework Programme. Marie Curie Career Integration Grant (DISEASENVIRON, PCIG10-GA-2011-303568) of the European Union.
  • Ramón y Cajal Program (RYC-2011-07847) of the Ministerio de Ciencia e Innovación (Spain).
  • BFU2013-41337-P grant of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (Ministerio de Economía y Competitividad, Spain).