Anthony J. Wavrin Week 3: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(Added Introduction)
 
(Added all of physiological factors)
Line 8: Line 8:


==Physiological parameters==
==Physiological parameters==
*
*The concentrations of ammonia used were 29, 44, 61, 66, 78, 90, 96, 114, and 118mM.
**It is interesting to note that at the concentration of 61mM of ammonia, glucose becomes the limiting nutrient.
===Figure 1===
====A=====
*The X-axis represents the increase in concentration of the ammonia.
*The Y-axis on the left represents the residual ammonia concentration.
*The Y-axis on the right represents the biomass (dry weight).
*The Y-axis on the far right represents the ammonia flux, which is calculated using ammonia concentration, residual ammonia concentration, and biomass.
*As ammonia increased to ammonia saturation, there was an increase in biomass, but stayed relatively constant after ammonia excess (>61mM).
*The residual ammonia concentration sky rockets after 61mM which is expected due to nitrogen excess.
====B====
*The X-axis represents the increase in concentration of the ammonia.
*The Y-axis on the left represents the CO2 production.
*The Y-axis on the far left represents the O2 usage.
*The Y-axis on the right represents the respiratory quotient, which is CO2 production/ O2 usage.
*Concentrations above 44mM of ammonia have a relatively flat respiratory quotient.
====C====
=====Left Figure=====
*The X-axis represents the increase in concentration of the ammonia.
*The Y-axis on the left represents the concentration of α-ketogluterate present.
*As the ammonia concentration increases, α-ketogluterate concentration decreases until 61mM.
=====Middle Figure=====
*The X-axis represents the increase in concentration of the ammonia.
*The Y-axis on the left represents the concentration of glutamate present.
*As the ammonia concentration increases, glutamate concentration increases until 61mM.
=====Right Figure=====
*The X-axis represents the increase in concentration of the ammonia.
*The Y-axis on the left represents the concentration of glutamine present.
*As the ammonia concentration increases, glutamine concentration increases continually.
 
==RNA Expression==

Revision as of 21:05, 30 January 2013

Introduction

  • This article is exploring one of the possible explanations of how nitrogen, used in the form of ammonia in this study, can effect Saccharomyces cerevisiae.
  • It is well known that nitrogen is an essential nutrient that can increase growth, as utilized in fertilizer.
  • It is hypothesized that the actual influx of nitrogen may cause growth instead of the concentration.
  • This study tests explores if increasing concentration of ammonia while keeping a constant influx will cause nitrogen related responses.
  • The concentrations used resulted in testing from nitrogen limitation to nitrogen excess.
  • Overall, they conduct effects of physiological parameters, RNA expression, and enzyme expression.

Physiological parameters

  • The concentrations of ammonia used were 29, 44, 61, 66, 78, 90, 96, 114, and 118mM.
    • It is interesting to note that at the concentration of 61mM of ammonia, glucose becomes the limiting nutrient.

Figure 1

A=

  • The X-axis represents the increase in concentration of the ammonia.
  • The Y-axis on the left represents the residual ammonia concentration.
  • The Y-axis on the right represents the biomass (dry weight).
  • The Y-axis on the far right represents the ammonia flux, which is calculated using ammonia concentration, residual ammonia concentration, and biomass.
  • As ammonia increased to ammonia saturation, there was an increase in biomass, but stayed relatively constant after ammonia excess (>61mM).
  • The residual ammonia concentration sky rockets after 61mM which is expected due to nitrogen excess.

B

  • The X-axis represents the increase in concentration of the ammonia.
  • The Y-axis on the left represents the CO2 production.
  • The Y-axis on the far left represents the O2 usage.
  • The Y-axis on the right represents the respiratory quotient, which is CO2 production/ O2 usage.
  • Concentrations above 44mM of ammonia have a relatively flat respiratory quotient.

C

Left Figure
  • The X-axis represents the increase in concentration of the ammonia.
  • The Y-axis on the left represents the concentration of α-ketogluterate present.
  • As the ammonia concentration increases, α-ketogluterate concentration decreases until 61mM.
Middle Figure
  • The X-axis represents the increase in concentration of the ammonia.
  • The Y-axis on the left represents the concentration of glutamate present.
  • As the ammonia concentration increases, glutamate concentration increases until 61mM.
Right Figure
  • The X-axis represents the increase in concentration of the ammonia.
  • The Y-axis on the left represents the concentration of glutamine present.
  • As the ammonia concentration increases, glutamine concentration increases continually.

RNA Expression