Audrey L. Atkin:Publications: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Atkin Top}}
{{Atkin Top}}
 
==Selected Publications==
<biblio>
Nickerson, K. W., A. L. Atkin, J. C. Hargarten, R. Pathirana, and S. Hasim. Thoughts on quorum sensing and fungal dimorphism.  Invited review for Biocommunication in Fungi, Ed. G. Witzany, Springer Verlag, in press. <br><br>
#Paper1 pmid=19188358
Kebaara, B. W., K. E. Baker, K. D. Patefield and A. L. Atkin, 2012.  Analysis of Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Current Protocols in Cell Biology Chapter 27:Unit27.3. [http://www.ncbi.nlm.nih.gov/pubmed/22422476] <br><br>
#Paper2 pmid=18836025
Deliz-Aguirre, R., A. L. Atkin and B. W. Kebaara, 2011.  Copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants.  Current Genetics 57(6):421-430. [http://www.ncbi.nlm.nih.gov/pubmed/21918884] <br><br>
#Paper3 pmid=18424510
Atkin, A. L., 2011. Yeast bioinformatics and strain engineering resources.  Methods in Molecular Biology, vol. 765, Strain Engineering: Methods and Protocols, Ed. J. A. Williams, Humana Press Inc., Totowa, NJ. pp 173-187. [http://www.ncbi.nlm.nih.gov/pubmed/21815093] <br><br>
#Paper4 pmid=17259544
Johnson, B., R. Steadman, K. D. Patefield, J. J. Bunker, A. L. Atkin, and P. Dussault, 2011.  N-(5)-phosphonoacetyl-L-ornithine (PALO): A convenient synthesis and investigation of its effect on regulation of amino acid biosynthetic genes in Saccharomyces cerevisiae.  Bioorg. Med. Chem. Letters 21(8):2351-2353. [http://www.ncbi.nlm.nih.gov/pubmed/21421312]<br> <br>
// Rated as an exceptional paper by Faculty 1000
Atkin, A. L., 2011 Yeast bioinformatics and strain engineering resources.  Methods in Molecular Biology, Vol. 765,  Strain Engineering: Methods and Protocols, Ed. J. A. Williams, Humana Press Inc., Totowa, NJ. pp 173-187. 
#Paper5 pmid=17036064
[http://www.ncbi.nlm.nih.gov/pubmed/21815093]<br> <br>
#Paper6 pmid=16751484
Langford, M. L., S. Hasim, K. W. Nickerson, and A. L. Atkin, 2010.  Activity and toxicity of farnesol towards Candida albicans is dependent on growth conditions.  Antimicrobial Agents and Chemotherapy, 54(2):940-942. [http://www.ncbi.nlm.nih.gov/pubmed/19933803] <br> <br>
#Paper7 pmid=16699554
Langford, M. L., A. L. Atkin, and K. W. Nickerson, 2009.  Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans.  Future Microbiology 4(10):1353-62. [http://www.ncbi.nlm.nih.gov/pubmed/19995193] <br> <br>
#Paper8 pmid=16339724
Kebaara, B.K. and A. L. Atkin, 2009.  Long 3’-UTRs target wild type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae.  Nucleic Acids Research, 37(9):2771-2778.
#Paper9 pmid=16085901
[http://www.ncbi.nlm.nih.gov/pubmed/19270062] <br> <br>
#Paper10 pmid=15716093
Ghosh, S., D. H. M. L. P. Navarathna, D. D. Roberts, J. T. Cooper, A. L. Atkin,T. M. Petro, and K. W. Nickerson, 2009.  Arginine induced germ tube formation in Candida albicans is essential for escape from murine macrophage cell line RAW264.7.  Infection and Immunity, 77(4):1596-1605. [http://www.ncbi.nlm.nih.gov/pubmed/19188358]
#Paper11 pmid=13680156
<br> <br>
#Paper12 pmid=12799443
Ghosh, S., B. Kebaara, A. L. Atkin, and K. W. Nickerson, 2008.  Regulation of aromatic alcohol production in Candida albicans.  Applied and Environmental Microbiology, 74:7211-7218. [http://www.ncbi.nlm.nih.gov/pubmed/18836025]
#Paper13 pmid=12695845
<br> <br>
#Paper14 pmid=10231788
Kebaara, B. W., M. L. Langford, D. H. M. L. P. Navaranthna, R. Dumitru, K. W. Nickerson, and A. L. Atkin, 2008.  Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous growth induction.  Eukaryotic Cell, 7: 980-987.
#Paper15 pmid=9799255
[http://www.ncbi.nlm.nih.gov/pubmed/18424510] <br> <br>
#Paper16 pmid=9268361
Dumitru, R., D. H. M. L. P. Navarathna, C. P. Semighini, C. G. Elowsky, R. V. Dumitru, D Dignard, M. Whiteway, A. L. Atkin, K. W. Nickerson, 2007.  In vivo and in vitro anaerobic mating in Candida albicans.  Eukaryotic Cell, 6:465-472. [http://www.ncbi.nlm.nih.gov/pubmed/17259544] <br>  Rated as an exceptional paper by Faculty 1000 <br> <br>
#Paper17 pmid=7545033
Kebaara, B. W., L. E. Nielson, K. W. Nickerson, and A. L. Atkin, 2006.  Determination of mRNA half-lives in Candida albicans using thiolutin as a transcription inhibitor.  Genome, 49:894-899. [http://www.ncbi.nlm.nih.gov/pubmed/17036064]
#Paper18 pmid=8244031
<br> <br>
#Paper19 pmid=1398091
Nickerson, K. W., A. L. Atkin, and J. M. Hornby, 2006. Quorum sensing in dimorphic fungi:  Farnesol and beyond, Appl. Environ. Microbiol., 72:3805-3813. [http://www.ncbi.nlm.nih.gov/pubmed/16751484]<br> <br>
#Paper20 pmid=2370870
Jensen, E. C., J. M. Hornby, N. E. Pagliaccetti, C. M. Wolter, K. W. Nickerson, and A. L. Atkin, 2006.  Farnesol restores wild-type colony morphology to 96% of Candida albicans colony morphology variants recovered following treatment with mutagens. Genome, 49:346-353. [http://www.ncbi.nlm.nih.gov/pubmed/16699554] <br> <br>
#Paper21 pmid=1975790
Taylor, R., B.  W. Kebaara, T. Nazarenus, A. Jones, R. Yamanaka, R. Uhrenholdt, J. P. Wendler, and A. L. Atkin, 2005.  Gene set co-regulated by the Saccharomyces cerevisiae nonsense-mediated mRNA decay pathway.  Eukaryotic Cell, 4(12):2066-2077. [http://www.ncbi.nlm.nih.gov/pubmed/16339724] <br> <br>
#Paper22 pmid=2109180
Mosel, D.D., R. Dumitru, J. M. Hornby, A. L. Atkin, and K. W. Nickerson, 2005.  Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum.  Appl. Environ. Microbiol., 71:4938-4940. [http://www.ncbi.nlm.nih.gov/pubmed/16085901]
</biblio>
<br> <br>
Nazarenus, T., R. Cedarberg, R. Bell, J. Cheatle, A. Forch, A. Haifley, A. Hou, B. Kebaara, C. Shields, K. Stoysich, R. Taylor, and A. L. Atkin, 2005. Upf1p, a highly conserved protein required for nonsense-mediated mRNA decay, interacts with two nuclear pore proteins, Nup100p and Nup116p. Gene 345:199-212. [http://www.ncbi.nlm.nih.gov/pubmed/15716093]
<br> <br>
Shields, C. M., R. Taylor, T. Nazarenus, J. Cheatle, A. Hou, A. Tapprich, A. Haifley, and A. L. Atkin, 2003. Saccharomyces cerevisiae Ats1p interacts with Nap1p, a cytoplasmic protein that controls bud morphogenesis. Curr. Genet., 44:184-194. [http://www.ncbi.nlm.nih.gov/pubmed/13680156]
<br> <br>
Kebaara, B., T. Nazarenus, R. Taylor, A. Forch, and A. L. Atkin, 2003.  The Upf-dependent decay of wild-type PPR1 mRNA depends on its 5’-UTR and first 92 ORF nucleotides.  Nucleic Acids Res. 31:3157-3165. [http://www.ncbi.nlm.nih.gov/pubmed/12799443]
<br> <br>
Kebaara, B., T. Nazarenus, R. Taylor, and A.L. Atkin, 2003.  Genetic background affects relative nonsense mRNA accumulation in wild-type and upf mutant yeast strains.  Curr. Genet, 43:171-177. [http://www.ncbi.nlm.nih.gov/pubmed/12695845]
<br> <br>
Atkin, A. L., 1999.  Preparation of yeast cells for confocal microscopy.  Methods in Molecular Biology, vol. 122:  Confocal Microscopy Methods and Protocols Ed. S. Paddock, Humana Press Inc., Totowa, NJ. pp. 131-139. [http://www.ncbi.nlm.nih.gov/pubmed/10231788] <br> <br>
J. N. Dahlseid, J. Puziss, R. L. Shirley, A. L. Atkin, P. Hieter, and M. R. Culbertson, 1998.  Accumulation of mRNA coding for yeast Ctf13 kinetocore subunit depends on the same factors that promote rapid decay of nonsense mRNAs.  Genetics, 150:1019-1035. [http://www.ncbi.nlm.nih.gov/pubmed/9799255] <br> <br>
Atkin, A. L., L. R. Schenkman, M. Eastham, J. D. Dahlseid, and M. R. Culbertson, 1997.  Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay.  J. Biol. Chem., 272:22163-22172. [http://www.ncbi.nlm.nih.gov/pubmed/9268361] <br> <br>
Atkin, A. L., N. Altamura, P. Leeds, and M. R. Culbertson, 1995.  The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm.  Mol. Biol. Cell., 6:611-625. [http://www.ncbi.nlm.nih.gov/pubmed/7545033] <br>

Revision as of 12:53, 22 June 2012


Home        Contact        Lab Members        Publications        Research        Photo Gallery       


Selected Publications

Nickerson, K. W., A. L. Atkin, J. C. Hargarten, R. Pathirana, and S. Hasim. Thoughts on quorum sensing and fungal dimorphism. Invited review for Biocommunication in Fungi, Ed. G. Witzany, Springer Verlag, in press.

Kebaara, B. W., K. E. Baker, K. D. Patefield and A. L. Atkin, 2012. Analysis of Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Current Protocols in Cell Biology Chapter 27:Unit27.3. [1]

Deliz-Aguirre, R., A. L. Atkin and B. W. Kebaara, 2011. Copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants. Current Genetics 57(6):421-430. [2]

Atkin, A. L., 2011. Yeast bioinformatics and strain engineering resources. Methods in Molecular Biology, vol. 765, Strain Engineering: Methods and Protocols, Ed. J. A. Williams, Humana Press Inc., Totowa, NJ. pp 173-187. [3]

Johnson, B., R. Steadman, K. D. Patefield, J. J. Bunker, A. L. Atkin, and P. Dussault, 2011. N-(5)-phosphonoacetyl-L-ornithine (PALO): A convenient synthesis and investigation of its effect on regulation of amino acid biosynthetic genes in Saccharomyces cerevisiae. Bioorg. Med. Chem. Letters 21(8):2351-2353. [4]

Atkin, A. L., 2011 Yeast bioinformatics and strain engineering resources. Methods in Molecular Biology, Vol. 765, Strain Engineering: Methods and Protocols, Ed. J. A. Williams, Humana Press Inc., Totowa, NJ. pp 173-187. [5]

Langford, M. L., S. Hasim, K. W. Nickerson, and A. L. Atkin, 2010. Activity and toxicity of farnesol towards Candida albicans is dependent on growth conditions. Antimicrobial Agents and Chemotherapy, 54(2):940-942. [6]

Langford, M. L., A. L. Atkin, and K. W. Nickerson, 2009. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiology 4(10):1353-62. [7]

Kebaara, B.K. and A. L. Atkin, 2009. Long 3’-UTRs target wild type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Research, 37(9):2771-2778. [8]

Ghosh, S., D. H. M. L. P. Navarathna, D. D. Roberts, J. T. Cooper, A. L. Atkin,T. M. Petro, and K. W. Nickerson, 2009. Arginine induced germ tube formation in Candida albicans is essential for escape from murine macrophage cell line RAW264.7. Infection and Immunity, 77(4):1596-1605. [9]

Ghosh, S., B. Kebaara, A. L. Atkin, and K. W. Nickerson, 2008. Regulation of aromatic alcohol production in Candida albicans. Applied and Environmental Microbiology, 74:7211-7218. [10]

Kebaara, B. W., M. L. Langford, D. H. M. L. P. Navaranthna, R. Dumitru, K. W. Nickerson, and A. L. Atkin, 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous growth induction. Eukaryotic Cell, 7: 980-987. [11]

Dumitru, R., D. H. M. L. P. Navarathna, C. P. Semighini, C. G. Elowsky, R. V. Dumitru, D Dignard, M. Whiteway, A. L. Atkin, K. W. Nickerson, 2007. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryotic Cell, 6:465-472. [12]
Rated as an exceptional paper by Faculty 1000

Kebaara, B. W., L. E. Nielson, K. W. Nickerson, and A. L. Atkin, 2006. Determination of mRNA half-lives in Candida albicans using thiolutin as a transcription inhibitor. Genome, 49:894-899. [13]

Nickerson, K. W., A. L. Atkin, and J. M. Hornby, 2006. Quorum sensing in dimorphic fungi: Farnesol and beyond, Appl. Environ. Microbiol., 72:3805-3813. [14]

Jensen, E. C., J. M. Hornby, N. E. Pagliaccetti, C. M. Wolter, K. W. Nickerson, and A. L. Atkin, 2006. Farnesol restores wild-type colony morphology to 96% of Candida albicans colony morphology variants recovered following treatment with mutagens. Genome, 49:346-353. [15]

Taylor, R., B. W. Kebaara, T. Nazarenus, A. Jones, R. Yamanaka, R. Uhrenholdt, J. P. Wendler, and A. L. Atkin, 2005. Gene set co-regulated by the Saccharomyces cerevisiae nonsense-mediated mRNA decay pathway. Eukaryotic Cell, 4(12):2066-2077. [16]

Mosel, D.D., R. Dumitru, J. M. Hornby, A. L. Atkin, and K. W. Nickerson, 2005. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl. Environ. Microbiol., 71:4938-4940. [17]

Nazarenus, T., R. Cedarberg, R. Bell, J. Cheatle, A. Forch, A. Haifley, A. Hou, B. Kebaara, C. Shields, K. Stoysich, R. Taylor, and A. L. Atkin, 2005. Upf1p, a highly conserved protein required for nonsense-mediated mRNA decay, interacts with two nuclear pore proteins, Nup100p and Nup116p. Gene 345:199-212. [18]

Shields, C. M., R. Taylor, T. Nazarenus, J. Cheatle, A. Hou, A. Tapprich, A. Haifley, and A. L. Atkin, 2003. Saccharomyces cerevisiae Ats1p interacts with Nap1p, a cytoplasmic protein that controls bud morphogenesis. Curr. Genet., 44:184-194. [19]

Kebaara, B., T. Nazarenus, R. Taylor, A. Forch, and A. L. Atkin, 2003. The Upf-dependent decay of wild-type PPR1 mRNA depends on its 5’-UTR and first 92 ORF nucleotides. Nucleic Acids Res. 31:3157-3165. [20]

Kebaara, B., T. Nazarenus, R. Taylor, and A.L. Atkin, 2003. Genetic background affects relative nonsense mRNA accumulation in wild-type and upf mutant yeast strains. Curr. Genet, 43:171-177. [21]

Atkin, A. L., 1999. Preparation of yeast cells for confocal microscopy. Methods in Molecular Biology, vol. 122: Confocal Microscopy Methods and Protocols Ed. S. Paddock, Humana Press Inc., Totowa, NJ. pp. 131-139. [22]

J. N. Dahlseid, J. Puziss, R. L. Shirley, A. L. Atkin, P. Hieter, and M. R. Culbertson, 1998. Accumulation of mRNA coding for yeast Ctf13 kinetocore subunit depends on the same factors that promote rapid decay of nonsense mRNAs. Genetics, 150:1019-1035. [23]

Atkin, A. L., L. R. Schenkman, M. Eastham, J. D. Dahlseid, and M. R. Culbertson, 1997. Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J. Biol. Chem., 272:22163-22172. [24]

Atkin, A. L., N. Altamura, P. Leeds, and M. R. Culbertson, 1995. The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol. Biol. Cell., 6:611-625. [25]