Audrey L. Atkin:Publications

From OpenWetWare

Revision as of 10:35, 19 August 2011 by Audrey L. Atkin (Talk | contribs)
Jump to: navigation, search


Home        Contact        Lab Members        Publications        Research        Photo Gallery       


Selected Publications

Johnson, B., R. Steadman, K. D. Patefield, J. J. Bunker, A. L. Atkin, and P. Dussault, 2011. N-(5)-phosphonoacetyl-L-ornithine (PALO): A convenient synthesis and investigation of its effect on regulation of amino acid biosynthetic genes in Saccharomyces cerevisiae. Bioorg. Med. Chem. Letters 21(8):2351-2353. [1]

Atkin, A. L., 2011 Yeast bioinformatics and strain engineering resources. Methods in Molecular Biology, Vol. 765, Strain Engineering: Methods and Protocols, Ed. J. A. Williams, Humana Press Inc., Totowa, NJ. pp 173-187. [2]

Langford, M. L., S. Hasim, K. W. Nickerson, and A. L. Atkin, 2010. Activity and toxicity of farnesol towards Candida albicans is dependent on growth conditions. Antimicrobial Agents and Chemotherapy, 54(2):940-942. [3]

Langford, M. L., A. L. Atkin, and K. W. Nickerson, 2009. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiology 4(10):1353-62. [4]

Kebaara, B.K. and A. L. Atkin, 2009. Long 3’-UTRs target wild type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Research, 37(9):2771-2778. [5]

Ghosh, S., D. H. M. L. P. Navarathna, D. D. Roberts, J. T. Cooper, A. L. Atkin,T. M. Petro, and K. W. Nickerson, 2009. Arginine induced germ tube formation in Candida albicans is essential for escape from murine macrophage cell line RAW264.7. Infection and Immunity, 77(4):1596-1605. [6]

Ghosh, S., B. Kebaara, A. L. Atkin, and K. W. Nickerson, 2008. Regulation of aromatic alcohol production in Candida albicans. Applied and Environmental Microbiology, 74:7211-7218. [7]

Kebaara, B. W., M. L. Langford, D. H. M. L. P. Navaranthna, R. Dumitru, K. W. Nickerson, and A. L. Atkin, 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous growth induction. Eukaryotic Cell, 7: 980-987. [8]

Dumitru, R., D. H. M. L. P. Navarathna, C. P. Semighini, C. G. Elowsky, R. V. Dumitru, D Dignard, M. Whiteway, A. L. Atkin, K. W. Nickerson, 2007. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryotic Cell, 6:465-472. [9]
Rated as an exceptional paper by Faculty 1000

Kebaara, B. W., L. E. Nielson, K. W. Nickerson, and A. L. Atkin, 2006. Determination of mRNA half-lives in Candida albicans using thiolutin as a transcription inhibitor. Genome, 49:894-899. [10]

Nickerson, K. W., A. L. Atkin, and J. M. Hornby, 2006. Quorum sensing in dimorphic fungi: Farnesol and beyond, Appl. Environ. Microbiol., 72:3805-3813. [11]

Jensen, E. C., J. M. Hornby, N. E. Pagliaccetti, C. M. Wolter, K. W. Nickerson, and A. L. Atkin, 2006. Farnesol restores wild-type colony morphology to 96% of Candida albicans colony morphology variants recovered following treatment with mutagens. Genome, 49:346-353. [12]

Taylor, R., B. W. Kebaara, T. Nazarenus, A. Jones, R. Yamanaka, R. Uhrenholdt, J. P. Wendler, and A. L. Atkin, 2005. Gene set co-regulated by the Saccharomyces cerevisiae nonsense-mediated mRNA decay pathway. Eukaryotic Cell, 4(12):2066-2077. [13]

Mosel, D.D., R. Dumitru, J. M. Hornby, A. L. Atkin, and K. W. Nickerson, 2005. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl. Environ. Microbiol., 71:4938-4940. [14]

Nazarenus, T., R. Cedarberg, R. Bell, J. Cheatle, A. Forch, A. Haifley, A. Hou, B. Kebaara, C. Shields, K. Stoysich, R. Taylor, and A. L. Atkin, 2005. Upf1p, a highly conserved protein required for nonsense-mediated mRNA decay, interacts with two nuclear pore proteins, Nup100p and Nup116p. Gene 345:199-212. [15]

Shields, C. M., R. Taylor, T. Nazarenus, J. Cheatle, A. Hou, A. Tapprich, A. Haifley, and A. L. Atkin, 2003. Saccharomyces cerevisiae Ats1p interacts with Nap1p, a cytoplasmic protein that controls bud morphogenesis. Curr. Genet., 44:184-194. [16]

Kebaara, B., T. Nazarenus, R. Taylor, A. Forch, and A. L. Atkin, 2003. The Upf-dependent decay of wild-type PPR1 mRNA depends on its 5’-UTR and first 92 ORF nucleotides. Nucleic Acids Res. 31:3157-3165. [17]

Kebaara, B., T. Nazarenus, R. Taylor, and A.L. Atkin, 2003. Genetic background affects relative nonsense mRNA accumulation in wild-type and upf mutant yeast strains. Curr. Genet, 43:171-177. [18]

Atkin, A. L., 1999. Preparation of yeast cells for confocal microscopy. Methods in Molecular Biology, vol. 122: Confocal Microscopy Methods and Protocols Ed. S. Paddock, Humana Press Inc., Totowa, NJ. pp. 131-139. [19]

J. N. Dahlseid, J. Puziss, R. L. Shirley, A. L. Atkin, P. Hieter, and M. R. Culbertson, 1998. Accumulation of mRNA coding for yeast Ctf13 kinetocore subunit depends on the same factors that promote rapid decay of nonsense mRNAs. Genetics, 150:1019-1035. [20]

Atkin, A. L., L. R. Schenkman, M. Eastham, J. D. Dahlseid, and M. R. Culbertson, 1997. Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J. Biol. Chem., 272:22163-22172. [21]

Atkin, A. L., N. Altamura, P. Leeds, and M. R. Culbertson, 1995. The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol. Biol. Cell., 6:611-625. [22]

Personal tools