BIO254:NaturalSelection: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 46: Line 46:




=== Darwin ===  
=== Darwin's Theory ===  


The Darwin's Theory of natural selection is considered as a cornerstone in modern biology.


=== Neo-Darwinism ===
=== Neo-Darwinism ===
Neo-Darwinism, or often refered as modern evolutionary synthesis, was initially established in the 1930s and 1940s, and led to a gene-centric view of evolution by the work of W. D. Hamilton, George C. Williams, John Maynard Smith and others in the 1960s. Neo-Darwinism integrates Charles Darwin's theory of natural selection, with genetics as the basis for biological inheritance, random genetic mutation as the source of variation, and mathematical population genetics.





Revision as of 23:07, 13 November 2006

WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       

Definition

Natural Selection is the process through which individuals with beneficial traits are more likely to survive and reproduce, and have better chances to pass on the traits to progeny, if the traits have heritable components. In the next generation, those traits tend to be more common. Through generations of accumulation, the traits will spread in the population, and can result in speciation and adaptation. On the other hand, individuals with injurious variations will have less chances to survive or reproduce, and their traits should be eliminated from the population.

The concept of “Natural Selection” was first introduced by Charles Darwin in his 1859 book “The Origin of Species by Means of Natural Selection”, by saying “…individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind. On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection. " Natural Selection provides one of the most important mechanisms on evolution.


Genetic Basis of Natural Selection

After genetics and population biology were incorporated into the studies of evolution, people get a better understanding of natural selection. The existence of genes was first suggested by Gregor Mendel, in the 1860s. In 1910s, T. H. Morgan introduced the chromosome theory of inheritance, R. A. Fisher showed how continuous variation could be the result of the action of many discrete loci. Morgan's student Theodosius Dobzhansky was the first to apply Morgan's chromosome theory and the mathematics of population genetics to natural populations of organism. Their works, as well as contributions from many other scientists shed light on the genetic basis of natural selection.

Traits of an organism are coded by their genes. But for each gene, there might be some variations, or so-called different alleles. The genetic variation arises from random mutation and recombination, and provides the sources for natural selection. Populations evolve by changes in the relative allele frequency brought about by random genetic drift, gene flow, and especially natural selection. Different alleles may give rise to different traits, or phenotypes. Individuals with the phenotypes favorable for surviving or reproduce have more chances to pass the alleles to the offspring, so that the allele frequency will increase in the population. The favorable genetic variants may have individually slight phenotypic effects and phenotypic changes are gradual. Given enough time, the gradual evolution could give rise to changes of great magnitude, such as reproductive isolation, and result in speciation or designation of higher taxonomic levels.


Natural Selection vs Artificial Selection

In the book "The Origin of Species", Darwin coined the term natural selection in analog to artificial selection, the process by which a farmer selects his breeding stock. But in fact, natural selection and artificial seletion are quite different processes. It would be beneficial here to make some comparisons between them.

Artificial selection often encourages the breeding of individuals possessing "desirable" characteristics over others, from a human perspective, either intentionally or unintentionally. The choice to encourage or decourage certain characteristics are usually clearly directed. The species formed under artificial selection do not necessarily have the fitness under natural conditions. Besides, people can only choose to change the frequency of alleles that have observable phenotypes.

On the other hand, as Francois Jacob pointed,“… natural selection does not work as an engineer works. It works like a tinkerer – a tinkerer who does not know exactly what he is going to produce but uses whatever he finds around him whether it be pieces of string, fragments of wood, or old cardboard… Evolution does not produce novelties from scratch.”.

It should be noticed that the underlying genetic basis for both artificial selection and natural selection are the same, and that the concept of artificial selection was first introduced as an illustration of the wider process of natural selection.


Selection Condition

Concerning the selection forces, natural selection can generally be divided into two classes, ecological selection and sexual seletion.

Ecological selection (or environmental selection) refers to the ecological processes that operate on inherited traits without reference to mating or secondary sex characteristics. Examples of ecological selection are climate and geographical changes, competitions for limiting natural resources, interactions among individuals of the same species (including relatives (e.g. kin selection) and conspecifics(e.g. competition, infanticide)), etc.

Sexual selection includes mechanisms such as mate choice and male-male competition. Sexual selection can happen both intersexually and intrasexually. Within a species, when one sex (typically females) acts as a limiting resource for the other, compititions (typically between males)will occurs over the limiting sex, and this results in sexual selection. In the case that females choose males, usually the most vigorous and best adapted males will have the greatest number of offspring, and therefore the alleles coding these favorable traits are more likely to be pass down to the progeny. Intrasexual selection is often associated with sexual dimorphism, including differences in body size between males and females of a species.


Natural selection happens at every life stage of an individual. Typical examples are shown in Figure 1. Selection at each of these stages can affect individuals' survivability and reproductive capcity.

Fig 1. Natural selection occurs at different life stages of an individual.

Research History of Natural Selection

Pre-Darwinian Theories

Lamarckian idea of inheritance of acquired characteristics


Darwin's Theory

The Darwin's Theory of natural selection is considered as a cornerstone in modern biology.

Neo-Darwinism

Neo-Darwinism, or often refered as modern evolutionary synthesis, was initially established in the 1930s and 1940s, and led to a gene-centric view of evolution by the work of W. D. Hamilton, George C. Williams, John Maynard Smith and others in the 1960s. Neo-Darwinism integrates Charles Darwin's theory of natural selection, with genetics as the basis for biological inheritance, random genetic mutation as the source of variation, and mathematical population genetics.


References

Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life John Murray, London; modern reprint Charles Darwin, Julian Huxley (2003). Chapter 4 - Natural Selection.

Futuyma, D.J. in Evolutionary Biology, Sinauer Associates, 1986; p.12

Tom Clandinin. Lecture Note. Chapter 13, Evolution of Sensory Systems.

Wikipedia, http://en.wikipedia.org/wiki/Natural_selection

Christiansen FB (1984) The definition and measurement of fitness. In: Evolutionary ecology (ed. Shorrocks B) pp65-79.


Recent updates to the site:

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

15 April 2024

     23:43  User:Yanbin Huang‎‎ 2 changes history +170 [Yanbin Huang‎ (2×)]
     
23:43 (cur | prev) 0 Yanbin Huang talk contribs (→‎Granted Patents)
     
23:43 (cur | prev) +170 Yanbin Huang talk contribs (→‎Granted Patents)
     22:11  The paper that launched microfluidics - Xi Ning‎‎ 14 changes history +9,705 [Xning098‎ (14×)]
     
22:11 (cur | prev) −6 Xning098 talk contribs (→‎Summary)
     
22:07 (cur | prev) −12 Xning098 talk contribs (→‎Synthesis)
     
22:06 (cur | prev) 0 Xning098 talk contribs
     
22:06 (cur | prev) +1 Xning098 talk contribs
     
22:05 (cur | prev) 0 Xning098 talk contribs
     
22:03 (cur | prev) +630 Xning098 talk contribs
     
22:01 (cur | prev) +3,189 Xning098 talk contribs
     
21:44 (cur | prev) +688 Xning098 talk contribs (→‎Separation and quantification)
     
21:33 (cur | prev) +306 Xning098 talk contribs
     
21:29 (cur | prev) −2 Xning098 talk contribs (→‎Electrokinetic effect)
     
21:28 (cur | prev) −1 Xning098 talk contribs (→‎Separation and quantification)
     
21:27 (cur | prev) +398 Xning098 talk contribs (→‎Separation and quantification)
     
21:24 (cur | prev) +2,812 Xning098 talk contribs
     
21:06 (cur | prev) +1,702 Xning098 talk contribs
     21:45  (Upload log) [Xning098‎ (4×)]
     
21:45 Xning098 talk contribs uploaded File:Figure 4 Tdesign.png
     
21:30 Xning098 talk contribs uploaded File:Figure 3 Set-up3.png
     
21:24 Xning098 talk contribs uploaded File:Figure 2 Set-up1.png
     
21:09 Xning098 talk contribs uploaded File:Figure 1 electroosmotic flow.png
N    18:16  Multilayer Paper Microfluidics - Madyson Redder‎‎ 21 changes history +6,228 [Mredder‎ (21×)]
     
18:16 (cur | prev) +540 Mredder talk contribs (→‎Fabrication Methods)
     
18:07 (cur | prev) +822 Mredder talk contribs (→‎Fabrication Methods)
     
17:58 (cur | prev) +1,223 Mredder talk contribs (→‎Fabrication Methods)
     
17:47 (cur | prev) −47 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:46 (cur | prev) +2 Mredder talk contribs (→‎Advantages)
     
17:46 (cur | prev) +1,094 Mredder talk contribs (→‎Advantages)
     
17:37 (cur | prev) +24 Mredder talk contribs (→‎Materials)
     
17:37 (cur | prev) +619 Mredder talk contribs (→‎Materials)
     
17:19 (cur | prev) +18 Mredder talk contribs (→‎Uses)
     
17:19 (cur | prev) +7 Mredder talk contribs (→‎Uses)
     
17:18 (cur | prev) −19 Mredder talk contribs (→‎Developing Countries and Travel)
     
17:18 (cur | prev) +15 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) 0 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) +1,103 Mredder talk contribs (→‎Uses)
     
17:14 (cur | prev) −453 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:13 (cur | prev) +1 Mredder talk contribs (→‎Overview)
     
17:12 (cur | prev) +273 Mredder talk contribs (→‎Overview)
     
17:08 (cur | prev) −699 Mredder talk contribs (→‎Overview)
     
17:06 (cur | prev) +95 Mredder talk contribs
     
17:04 (cur | prev) +12 Mredder talk contribs
N    
17:03 (cur | prev) +1,598 Mredder talk contribs (Created page with "{{Template:CHEM-ENG590E}} Overview 3D polymeric or glass microfluidic devices were created to run tests on small amounts of liquid and receive results in a timely manner. However, these devices are costly and time consuming to produce. A solution to this problem was single-layer paper microfluidic devices. The most common known examples of single-layer paper microfluidic devices are pregnancy tests, COVID-19 antigen tests, and glucose test strips. While these devices a...")
     17:02  CHEM-ENG590E:Wiki Textbook diffhist +54 Mredder talk contribs (→‎Chapter 7 - Fiber-based Microfluidics)
 m   07:22  Paper Microfluidic Device for Archiving Breast Epithelial Cells diffhist +6 Sarah L. Perry talk contribs
     06:39  Hu diffhist +66 Hugangqing talk contribs

14 April 2024