BIO254:NaturalSelection

From OpenWetWare
Revision as of 23:48, 13 November 2006 by BIO254 25 (talk | contribs)
Jump to navigationJump to search
WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       

Definition

Natural Selection is the process through which individuals with beneficial traits are more likely to survive and reproduce, and have better chances to pass on the traits to progeny, if the traits have heritable components. In the next generation, those traits tend to be more common. Through generations of accumulation, the traits will spread in the population, and can result in speciation and adaptation. On the other hand, individuals with injurious variations will have less chances to survive or reproduce, and their traits should be eliminated from the population.

The concept of “Natural Selection” was first introduced by Charles Darwin in his 1859 book “The Origin of Species by Means of Natural Selection”, by saying “…individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind. On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection. " Natural Selection provides one of the most important mechanisms on evolution.

Genetic Basis of Natural Selection

After genetics and population biology were incorporated into the studies of evolution, people get a better understanding of natural selection. The existence of genes was first suggested by Gregor Mendel, in the 1860s. In 1910s, T. H. Morgan introduced the chromosome theory of inheritance, R. A. Fisher showed how continuous variation could be the result of the action of many discrete loci. Morgan's student Theodosius Dobzhansky was the first to apply Morgan's chromosome theory and the mathematics of population genetics to natural populations of organism. Their works, as well as contributions from many other scientists shed light on the genetic basis of natural selection.

Traits of an organism are coded by their genes. But for each gene, there might be some variations, or so-called different alleles. The genetic variation arises from random mutation and recombination, and provides the sources for natural selection. Populations evolve by changes in the relative allele frequency brought about by random genetic drift, gene flow, and especially natural selection. Different alleles may give rise to different traits, or phenotypes. Individuals with the phenotypes favorable for surviving or reproduce have more chances to pass the alleles to the offspring, so that the allele frequency will increase in the population. The favorable genetic variants may have individually slight phenotypic effects and phenotypic changes are gradual. Given enough time, the gradual evolution could give rise to changes of great magnitude, such as reproductive isolation, and result in speciation or designation of higher taxonomic levels.

Natural Selection vs Artificial Selection

In the book "The Origin of Species", Darwin coined the term natural selection in analog to artificial selection, the process by which a farmer selects his breeding stock. But in fact, natural selection and artificial seletion are quite different processes. It would be beneficial here to make some comparisons between them.

Artificial selection often encourages the breeding of individuals possessing "desirable" characteristics over others, from a human perspective, either intentionally or unintentionally. The choice to encourage or decourage certain characteristics are usually clearly directed. The species formed under artificial selection do not necessarily have the fitness under natural conditions. Besides, people can only choose to change the frequency of alleles that have observable phenotypes.

On the other hand, as Francois Jacob pointed,“… natural selection does not work as an engineer works. It works like a tinkerer – a tinkerer who does not know exactly what he is going to produce but uses whatever he finds around him whether it be pieces of string, fragments of wood, or old cardboard… Evolution does not produce novelties from scratch.”.

It should be noticed that the underlying genetic basis for both artificial selection and natural selection are the same, and that the concept of artificial selection was first introduced as an illustration of the wider process of natural selection.

Selection Condition

Concerning the selection forces, natural selection can generally be divided into two classes, ecological selection and sexual seletion.

Ecological selection (or environmental selection) refers to the ecological processes that operate on inherited traits without reference to mating or secondary sex characteristics. Examples of ecological selection are climate and geographical changes, competitions for limiting natural resources, interactions among individuals of the same species (including relatives (e.g. kin selection) and conspecifics(e.g. competition, infanticide)), etc.

Sexual selection includes mechanisms such as mate choice and male-male competition. Sexual selection can happen both intersexually and intrasexually. Within a species, when one sex (typically females) acts as a limiting resource for the other, compititions (typically between males)will occurs over the limiting sex, and this results in sexual selection. In the case that females choose males, usually the most vigorous and best adapted males will have the greatest number of offspring, and therefore the alleles coding these favorable traits are more likely to be pass down to the progeny. Intrasexual selection is often associated with sexual dimorphism, including differences in body size between males and females of a species.

Natural selection happens at every life stage of an individual. Typical examples are shown in Figure 1. Selection at each of these stages can affect individuals' survivability and reproductive capcity.

Fig 1. Natural selection occurs at different life stages of an individual.

Research History of Natural Selection

Pre-Darwinian Theories

Until the early 19th century, through studying the fossil records, people began to recognize that organisms that lived in the distant past were often quite different from those that lived today. People tried to explain the dramatic changes and became aware that species might emerge by modification from ancestor species. Jean-Baptiste Lamarck is one of the important radical evolutionists at that time. He proposed the theory of "inheritance of acquired characters", that changes in physiology (adaptations) acquired by individuals during the life time might be inherited by their progeny, causing, in enough time, transmutation of species.

Darwin's Theory

The Darwin's Theory of natural selection is considered as a cornerstone in modern biology. Inspired by the observations during the trip on the Voyage of the Beagle, and by the economic theories of Thomas Malthus, Darwin conceived his theory of evolution by natural selection as an explanation for adaptation and speciation between 1842 and 1844, and put them down formally in his famous 1859 book "The Origin of Species".

It should be noticed that in 1858, Alfred Russel Wallace, a young naturalist, independently proposed the principle and described it in a letter to Darwin. Two short papers by the two were read at the Linnean Society announcing co-discovery of the principle. The following year, Darwin published the book "The Origin of Species".

Neo-Darwinism

Neo-Darwinism, or often refered as modern evolutionary synthesis, was initially established in the 1930s and 1940s, and led to a gene-centric view of evolution by the work of W. D. Hamilton, George C. Williams, John Maynard Smith and others in the 1960s. Neo-Darwinism integrates Charles Darwin's theory of natural selection, with genetics as the basis for biological inheritance, random genetic mutation as the source of variation, and mathematical population genetics.

References

Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life John Murray, London; modern reprint Charles Darwin, Julian Huxley (2003). Chapter 4 - Natural Selection.

Futuyma, D.J. in Evolutionary Biology, Sinauer Associates, 1986; p.12

Tom Clandinin. Lecture Note. Chapter 13, Evolution of Sensory Systems.

Wikipedia, http://en.wikipedia.org/wiki/Natural_selection

Christiansen FB (1984) The definition and measurement of fitness. In: Evolutionary ecology (ed. Shorrocks B) pp65-79.


Recent updates to the site:

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

23 April 2024

     15:33  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +837 [Rcostello‎ (6×)]
     
15:33 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:33 (cur | prev) +203 Rcostello talk contribs (→‎References)
     
15:31 (cur | prev) −2 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:29 (cur | prev) −474 Rcostello talk contribs (→‎References)
     
15:29 (cur | prev) +845 Rcostello talk contribs (→‎MEMS Devices)
     
15:14 (cur | prev) +264 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     11:58  BioMicroCenter:People‎‎ 2 changes history +30 [Lttran‎ (2×)]
     
11:58 (cur | prev) −4 Lttran talk contribs (→‎BioMicro Center Staff)
     
11:49 (cur | prev) +34 Lttran talk contribs (→‎BioMicro Center Staff)
     11:46 Upload log Lttran talk contribs uploaded File:SKR BMC.jpg

22 April 2024

     19:28  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 4 changes history +1 [Rcostello‎ (4×)]
     
19:28 (cur | prev) −2 Rcostello talk contribs (→‎Nanowires)
     
19:26 (cur | prev) 0 Rcostello talk contribs (→‎Biology-Inspired Solution)
     
15:03 (cur | prev) +2 Rcostello talk contribs (→‎At the Microscale)
     
15:02 (cur | prev) +1 Rcostello talk contribs (→‎Overview)
     19:01  Microfluidic Sensing- Microfluidic Biosensors- Xiao Fan‎‎ 17 changes history +391 [Khiemle‎ (17×)]
     
19:01 (cur | prev) +14 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
19:00 (cur | prev) +7 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
19:00 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:59 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:58 (cur | prev) −2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:58 (cur | prev) +2 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) +1 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) −9 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:57 (cur | prev) −40 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:57 (cur | prev) +2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:56 (cur | prev) +34 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:56 (cur | prev) +86 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:54 (cur | prev) 0 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:54 (cur | prev) −10 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:53 (cur | prev) +108 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:51 (cur | prev) +84 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:49 (cur | prev) +78 Khiemle talk contribs (→‎Microfluidic biosensors)
     09:24  CHEM-ENG590E:Wiki Textbook diffhist +16 Rcostello talk contribs (→‎Chapter 15 - Other Topics)
     09:24 Move log Rcostello talk contribs moved page "Pick and Place" Assembly of Parts Using PDMS - Amy Lim to "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello
     08:59  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim diffhist −2,792 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)

21 April 2024

19 April 2024

     21:58  Hu‎‎ 2 changes history +58 [Hugangqing‎ (2×)]
     
21:58 (cur | prev) −8 Hugangqing talk contribs
     
21:58 (cur | prev) +66 Hugangqing talk contribs

18 April 2024

     15:01  Pan:Who we are diffhist +14 Taopan talk contribs
     15:00  Pan:Methods‎‎ 2 changes history +456 [Taopan‎ (2×)]
     
15:00 (cur | prev) +2 Taopan talk contribs
     
14:59 (cur | prev) +454 Taopan talk contribs
     14:56  Pan:Publications‎‎ 2 changes history +396 [Taopan‎ (2×)]
     
14:56 (cur | prev) +74 Taopan talk contribs
     
14:54 (cur | prev) +322 Taopan talk contribs
     13:03  BioMicroCenter:Pricing diffhist +166 Challee talk contribs
     12:58  BioMicroCenter:Singular Sequencing‎‎ 2 changes history +124 [Challee‎ (2×)]
     
12:58 (cur | prev) +14 Challee talk contribs (→‎Things to Consider)
     
12:57 (cur | prev) +110 Challee talk contribs
     12:12  BioMicroCenter:Tecan Freedom Evo‎‎ 4 changes history −28 [Noelani Kamelamela‎ (4×)]
     
12:12 (cur | prev) +4 Noelani Kamelamela talk contribs
     
12:12 (cur | prev) +3 Noelani Kamelamela talk contribs
     
10:13 (cur | prev) +7 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) −42 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     11:42  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist −3 Sarah L. Perry talk contribs