BIO254:Pacemaker: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
Line 3: Line 3:
Due Date: 11/20
Due Date: 11/20


=Definition=
A pacemaker is a rhythm generator.  Biological pacemakers drive many time-dependent processes in organisms, including heart rate, cell division in embryogenesis, . 
== Artificial pacemakers ==
Artificial pacemakers are used to rescue patients with deficient pacemakers, for example when the sinus node of the heart does not function correctly.  Genetically engineered pacemakers may begin to replace microelectronic pacemakers (Boink, 2006). 
an oscillator, or rhythm generator.  Biological pacemakers can be in a single cell, but typically involve many cells.  The periods of biological pacemakers span a large range.
== References ==
Med Biol Eng Comput. 2006 Oct 18; [Epub ahead of print]
Gene therapy to create biological pacemakers.
Boink GJ, Seppen J, de Bakker JM, Tan HL.
==Heterotrimeric G proteins==
Heterotrimeric G proteins are comprised of three subunits -- α, β and γ -- that exist as a complex (G<sub>αβγ</sub>) in the GDP-bound state but dissociate (into G<sub>α</sub> and G<sub>βγ</sub>) upon the release of GDP and binding of GTP.  G<sub>α</sub> contains the GDP/GTP binding site and GTPase activity  (Fig. 1).  The C-terminus of G<sub>α</sub> gives the G protein affinity for specific membrane-bound GPCRs (see below).  [[Image: Milligan2006Figure2.jpg|frame|center|Figure 1. Image from (Milligan, 2006).  Some parts have been removed for clarity.  GDP is shown in purple.  The α subunit C-terminus residues, shown in blue, convey GPCR specificity.  The N-terminus helix, shown in red, is required for binding of G<sub>α</sub>to the other subunits.]] 
A pacemaker (in the context of NBIO 254) is a biological clock, or in other words a rhythm generator in an organism. 
==<h3>Recent updates to the site:</h3>==
==<h3>Recent updates to the site:</h3>==
{{Special:Recentchanges/BIO254&limit=50}}
{{Special:Recentchanges/BIO254&limit=50}}

Revision as of 02:57, 19 November 2006

WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       

Due Date: 11/20

Definition

A pacemaker is a rhythm generator. Biological pacemakers drive many time-dependent processes in organisms, including heart rate, cell division in embryogenesis, .

Artificial pacemakers

Artificial pacemakers are used to rescue patients with deficient pacemakers, for example when the sinus node of the heart does not function correctly. Genetically engineered pacemakers may begin to replace microelectronic pacemakers (Boink, 2006).

an oscillator, or rhythm generator.  Biological pacemakers can be in a single cell, but typically involve many cells.  The periods of biological pacemakers span a large range. 

References

Med Biol Eng Comput. 2006 Oct 18; [Epub ahead of print]

Gene therapy to create biological pacemakers.

Boink GJ, Seppen J, de Bakker JM, Tan HL.


Heterotrimeric G proteins

Heterotrimeric G proteins are comprised of three subunits -- α, β and γ -- that exist as a complex (Gαβγ) in the GDP-bound state but dissociate (into Gα and Gβγ) upon the release of GDP and binding of GTP. Gα contains the GDP/GTP binding site and GTPase activity (Fig. 1). The C-terminus of Gα gives the G protein affinity for specific membrane-bound GPCRs (see below).
Figure 1. Image from (Milligan, 2006). Some parts have been removed for clarity. GDP is shown in purple. The α subunit C-terminus residues, shown in blue, convey GPCR specificity. The N-terminus helix, shown in red, is required for binding of Gαto the other subunits.

A pacemaker (in the context of NBIO 254) is a biological clock, or in other words a rhythm generator in an organism.

Recent updates to the site:

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

25 April 2024

     11:28  BioMicroCenter:Tecan Freedom Evo diffhist −35 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     11:27 Upload log Noelani Kamelamela talk contribs uploaded a new version of File:Chemagic360.jpg
     00:22  The paper that launched microfluidics - Xi Ning‎‎ 7 changes history +4,723 [Xning098‎ (7×)]
     
00:22 (cur | prev) −97 Xning098 talk contribs
     
00:18 (cur | prev) +14 Xning098 talk contribs (→‎Summary)
     
00:11 (cur | prev) +1 Xning098 talk contribs (→‎Introduction)
     
00:11 (cur | prev) +1 Xning098 talk contribs (→‎Introduction)
     
00:11 (cur | prev) 0 Xning098 talk contribs (→‎References)
     
00:08 (cur | prev) +4 Xning098 talk contribs (→‎Significance)
     
00:07 (cur | prev) +4,800 Xning098 talk contribs

24 April 2024

     22:50  WAKNA:Basics‎‎ 8 changes history +610 [Berthold Drexler‎ (8×)]
     
22:50 (cur | prev) +136 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
22:47 (cur | prev) +238 Berthold Drexler talk contribs (→‎Neuromonitoring allgemein)
     
22:33 (cur | prev) +151 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
22:31 (cur | prev) 0 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
22:30 (cur | prev) +1 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
22:30 (cur | prev) +313 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
06:23 (cur | prev) +192 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
06:21 (cur | prev) −421 Berthold Drexler talk contribs (→‎Sonstige)
     18:35  User:Yanbin Huang‎‎ 2 changes history +25 [Yanbin Huang‎ (2×)]
     
18:35 (cur | prev) +13 Yanbin Huang talk contribs (→‎Peer-Reviewed Publications)
     
18:34 (cur | prev) +12 Yanbin Huang talk contribs (→‎Peer-Reviewed Publications)
     17:49  Hu‎‎ 2 changes history +28 [Hugangqing‎ (2×)]
     
17:49 (cur | prev) +18 Hugangqing talk contribs
     
17:48 (cur | prev) +10 Hugangqing talk contribs
     08:14  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +394 [Rcostello‎ (6×)]
     
08:14 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:13 (cur | prev) −14 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) +110 Rcostello talk contribs (→‎References)
     
08:11 (cur | prev) +299 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     08:02 Upload log Rcostello talk contribs uploaded File:Pick and Place.mp4

23 April 2024

     15:33  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +837 [Rcostello‎ (6×)]
     
15:33 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:33 (cur | prev) +203 Rcostello talk contribs (→‎References)
     
15:31 (cur | prev) −2 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:29 (cur | prev) −474 Rcostello talk contribs (→‎References)
     
15:29 (cur | prev) +845 Rcostello talk contribs (→‎MEMS Devices)
     
15:14 (cur | prev) +264 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     11:58  BioMicroCenter:People‎‎ 2 changes history +30 [Lttran‎ (2×)]
     
11:58 (cur | prev) −4 Lttran talk contribs (→‎BioMicro Center Staff)
     
11:49 (cur | prev) +34 Lttran talk contribs (→‎BioMicro Center Staff)
     11:46 Upload log Lttran talk contribs uploaded File:SKR BMC.jpg

22 April 2024

     19:28  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 2 changes history −2 [Rcostello‎ (2×)]
     
19:28 (cur | prev) −2 Rcostello talk contribs (→‎Nanowires)
     
19:26 (cur | prev) 0 Rcostello talk contribs (→‎Biology-Inspired Solution)
     19:01  Microfluidic Sensing- Microfluidic Biosensors- Xiao Fan‎‎ 11 changes history +45 [Khiemle‎ (11×)]
     
19:01 (cur | prev) +14 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
19:00 (cur | prev) +7 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
19:00 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:59 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:58 (cur | prev) −2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:58 (cur | prev) +2 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) +1 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) −9 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:57 (cur | prev) −40 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:57 (cur | prev) +2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:56 (cur | prev) +34 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)