BIO254:Phototransduction: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 75: Line 75:


=='''References'''==
=='''References'''==
'''Principles of Neural Science''', by Kandel, Schwartz, & Jessell, 4th edition, 2001
'''Neuroscience''', by Purves, Augustine, Fitzpatrick, Katz, LaMantia, McNamara, & Williams, 2nd edition, 2001
'''The Quest for Consciousness''', by Christof Koch, 2004
'''Bio254 Lecture notes''', October 23, 2006, by Tom Clandinin


==<h3>Recent updates to the site:</h3>==
==<h3>Recent updates to the site:</h3>==
{{Special:Recentchanges/BIO254&limit=50}}
{{Special:Recentchanges/BIO254&limit=50}}
</div>
</div>

Revision as of 10:27, 1 November 2006

WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       


Definition

Phototransduction is the process through which photons, elementary particles of light, are converted into electrical signals. Visual phototransduction occurs in the retina through photoreceptors, cells that are sensitive to light.


Photoreceptor Cells

Two types of photoreceptors: rods and cones

There are two types of photoreceptors distributed unevenly across the retina: rods and cones. Rods are very sensitive cells specialized for night vision. In bright light conditions the response of the rods is saturated and cones, faster but less sensitive photoreceptors, mediate day vision. There are three types of cones, each one of them responding best to different wavelengths (short, middle, and long). Their combined responses generate color vision.

Opsin, the key molecule for phototransduction

Both rods and cones contain opsin, a G protein-coupled receptor. Opsin is bound to a light-absorbing chromophore, 11-cis-retinal (an aldehyde of vitamin A). Different types of opsins are involved in transducing light of different intensities and wavelengths. Rhodopsin is present in rods and transduces dim light while photopsins are present in cones cells and generate color vision.


Phototransduction step by step

In the absence of light, the photoreceptors are depolarized to a membrane resting potential of -40mV. Light will hyperpolarize the photoreceptors to -70mV (Figure 1). This is in contrast to most other neuronal types, which depolarize following excitation.


Figure 1: An intracellular recording from a single cone stimulated with different amounts of light. Each trace represents the response to a brief flash that was varied in intensity. At the highest light levels, the response amplitude saturates.


A key second messenger molecule responsible for maintaining a depolarized rest state in photoreceptors is the nucleotide cyclic guanosine 3’-5’ monophospate (cGMP). High cGMP levels keep cGMP-gated ion channels in the open state and allow them to pass an inward Na+ current (Figure 2).


Figure 2: Cyclic GMP-gated channels in the outer segment membrane are responsible for the light-induced changes in the electrical activity of photoreceptors.


Phototransduction involves three main biochemical events:

Light entering the eye activates the opsin molecules in the photoreceptors

Upon photon absorption, 11-cis-retinal undergoes an isomerization to the all-trans form, causing a conformational change in the rhodopsin. The activated rhodopsin is called metarhodopsin II.

The precursor for 11-cis-retinal is all-trans-retinol (vitamin A). A diet rich in vitamin A is crucial for vision, since vitamin A cannot be synthesized by humans.

Activated rhodopsin causes a reduction in the cGMP intracellular concentration

The cytoplasmic cGMP levels are controlled by cGMP phosphodiesterase, an enzyme that breaks down cGMP. In the dark, the activity of this enzyme is relatively week. When the photoreceptor is exposed to light, metarhodopsin II stimulates the activity of cGMP phosphodiesterase via transducin, a G protein. GDP-bound inactive transducin will exchange GDP for GTP following interaction with activated rhodopsin. GTP-bound active transducing will increase the activity of cGMP phosphodiesterase. The result is decreased levels of cGMP in the cytoplasm.


The photoreceptor is hyperpolarized following exposure to light

Decreased levels of cGMP cause the closing of cGMP-gated ion channels which will lead to membrane hyperpolarization.

Figure 3 summarizes the phototransduction cascade.


Figure 3: Details of phototransduction in rod photoreceptors. (A) The molecular structure of rhodopsin, the pigment in rods. (B) The second messenger cascade of phototransduction. Light stimulation of rhodopsin in the receptor disks leads to the activation of a G-protein (transducin), which in turn activates a phosphodiesterase (PDE). The phosphodiesterase hydrolyzes cGMP, reducing its concentration in the outer segment and leading to the closure of sodium channels in the outer segment membrane.

Termination of the phototransduction cascade

The light response is terminated by two mechanisms. Transducin has GTPase activity and therefore it will inactivate itself by hydrolyzing bound GTP to GDP. The other shutoff mechanism involves phosphorylation of the activated rhodopsin by the opsin kinase. Phosphorylated rhodopsin will be inactivated by binding to arrestin.

Amplification in the phototransduction cascade

The activation of a single rhodopsin by a single photon is sufficient to cause a significant change in the membrane conductance. This is possible due to amplification steps present in the transduction cascade.

A single photoactivated rhodopsin catalyses the activation of 500 transducin molecules. Each transducing can stimulate one cGMP phosphodiesterase molecule and each cGMP phosphodiesterase molecule can break down 10^3 molecules of cGMP per second. Therefore, a single activated rhodopsin can cause the hydrolysis of more than 10^5 molecules of cGMP per second.


References

Principles of Neural Science, by Kandel, Schwartz, & Jessell, 4th edition, 2001 Neuroscience, by Purves, Augustine, Fitzpatrick, Katz, LaMantia, McNamara, & Williams, 2nd edition, 2001 The Quest for Consciousness, by Christof Koch, 2004 Bio254 Lecture notes, October 23, 2006, by Tom Clandinin

Recent updates to the site:

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

24 April 2024

     08:14  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +394 [Rcostello‎ (6×)]
     
08:14 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:13 (cur | prev) −14 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) +110 Rcostello talk contribs (→‎References)
     
08:11 (cur | prev) +299 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     08:02 Upload log Rcostello talk contribs uploaded File:Pick and Place.mp4
     06:23  WAKNA:Basics‎‎ 2 changes history −229 [Berthold Drexler‎ (2×)]
     
06:23 (cur | prev) +192 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
06:21 (cur | prev) −421 Berthold Drexler talk contribs (→‎Sonstige)

23 April 2024

     15:33  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 6 changes history +837 [Rcostello‎ (6×)]
     
15:33 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:33 (cur | prev) +203 Rcostello talk contribs (→‎References)
     
15:31 (cur | prev) −2 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     
15:29 (cur | prev) −474 Rcostello talk contribs (→‎References)
     
15:29 (cur | prev) +845 Rcostello talk contribs (→‎MEMS Devices)
     
15:14 (cur | prev) +264 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)
     11:58  BioMicroCenter:People‎‎ 2 changes history +30 [Lttran‎ (2×)]
     
11:58 (cur | prev) −4 Lttran talk contribs (→‎BioMicro Center Staff)
     
11:49 (cur | prev) +34 Lttran talk contribs (→‎BioMicro Center Staff)
     11:46 Upload log Lttran talk contribs uploaded File:SKR BMC.jpg

22 April 2024

     19:28  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 4 changes history +1 [Rcostello‎ (4×)]
     
19:28 (cur | prev) −2 Rcostello talk contribs (→‎Nanowires)
     
19:26 (cur | prev) 0 Rcostello talk contribs (→‎Biology-Inspired Solution)
     
15:03 (cur | prev) +2 Rcostello talk contribs (→‎At the Microscale)
     
15:02 (cur | prev) +1 Rcostello talk contribs (→‎Overview)
     19:01  Microfluidic Sensing- Microfluidic Biosensors- Xiao Fan‎‎ 17 changes history +391 [Khiemle‎ (17×)]
     
19:01 (cur | prev) +14 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
19:00 (cur | prev) +7 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
19:00 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:59 (cur | prev) +18 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:58 (cur | prev) −2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:58 (cur | prev) +2 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) +1 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:58 (cur | prev) −9 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:57 (cur | prev) −40 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:57 (cur | prev) +2 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:56 (cur | prev) +34 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:56 (cur | prev) +86 Khiemle talk contribs (→‎Microfluidic immunosensors)
     
18:54 (cur | prev) 0 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:54 (cur | prev) −10 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:53 (cur | prev) +108 Khiemle talk contribs (→‎Enzyme-based microfluidic biosensors)
     
18:51 (cur | prev) +84 Khiemle talk contribs (→‎DNA-based microfluidic biosensors)
     
18:49 (cur | prev) +78 Khiemle talk contribs (→‎Microfluidic biosensors)
     09:24  CHEM-ENG590E:Wiki Textbook diffhist +16 Rcostello talk contribs (→‎Chapter 15 - Other Topics)
     09:24 Move log Rcostello talk contribs moved page "Pick and Place" Assembly of Parts Using PDMS - Amy Lim to "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello
     08:59  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim diffhist −2,792 Rcostello talk contribs (→‎"Pick and Place" for Microfluidics)

21 April 2024

19 April 2024

     21:58  Hu‎‎ 2 changes history +58 [Hugangqing‎ (2×)]
     
21:58 (cur | prev) −8 Hugangqing talk contribs
     
21:58 (cur | prev) +66 Hugangqing talk contribs

18 April 2024

     15:01  Pan:Who we are diffhist +14 Taopan talk contribs
     15:00  Pan:Methods‎‎ 2 changes history +456 [Taopan‎ (2×)]
     
15:00 (cur | prev) +2 Taopan talk contribs
     
14:59 (cur | prev) +454 Taopan talk contribs
     14:56  Pan:Publications diffhist +74 Taopan talk contribs