BISC220/S10: Mod 1 Lab 4

From OpenWetWare
Jump to navigationJump to search
Wellesley College     BISC 220     Cellular Physiology

Home        Lecture Syllabus        Lab Calendars/Point Distribution        Assignments        Resources        Glossary       
Enzymes        Secretory Pathway        Cytoskeleton        OWW Basics              

Polyacrylamide Gel Electrophoresis

Another way to determine the effectiveness of our purification technique is to perform sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on the CE and PF. SDS, an anionic detergent, is used to both denature the proteins and to give them an overall negative charge. The electrophoresis loading and running buffers also contain SDS. This negative charge allows the proteins to run toward the anode (positive electrode). The larger molecules are retarded by the acrylamide, which acts like a sieve, so they move more slowly through the gel than the smaller molecules. By running a sample of known molecular weights in a lane adjacent to the extracts, it is possible, by comparison, to determine the molecular weights of the bands of unknown proteins in each of the extracts. In addition to SDS, a denaturing and loading solution called Laemmli buffer contains:

  1. 10% glycerol, which makes the solution dense enough to fall through the running buffer into the wells of the gel, so the sample doesn't float away;
  2. 5% β−mercaptoethanol to break sulfide bonds and to keep disulfide bonds from reforming between the denatured proteins
  3. 2% SDS Sodium dodecyl sulfate,
  4. a trace amount of tracking dye, bromphenol blue, which will run ahead of the proteins, forming a visible front as the samples run during electrophoresis.
  5. in the solvent 0.0625 M Tris buffer pH 6.7


The gels are placed in the tank, which is half filled with cold running buffer. The top chamber is filled and checked for leaks, which can also cause distortion of the current. The current runs from the top chamber through the gel to the lower chamber, which is connected to the anode (red electrode). The negatively charged proteins will migrate toward the anode according to their molecular weights with the smaller proteins migrating farther down the gel than the larger proteins.

Protocol

Microsoft Word File: Media:Example.ogg

For SDS-PAGE, you will load 10 µl of each of your 4 samples (CE, PF, pre-IPTG cells, and post-IPTG cells) into lanes of a 4-15% gradient polyacrylamide gel. The crude extract and purified fraction should each contain 5 µg of protein.

  1. Make dilutions in Z buffer of your crude extract (CE) and your purified fraction (PF) to end up with 15 μg of protein in 15 μl of volume (1µg/µl concentration). You will have to look up the original protein concentration that you calculated for these samples. Remember that the sample of PF that you will use today has no added glycerol. **If you had less than 1 mg/ml of PF then you cannot make a dilution! See your instructor.
  2. Add an equal volume (15 μl) of Laemmli buffer, also called sample buffer. You will load 10 μl of this mixture onto the gel. The sample loaded contains 5 micrograms of protein. Your Instructor will demonstrate the loading procedure.
  3. In Lab I you saved some of the E. coli cells harvested before and after the β-galactosidase induction step with IPTG. To each of the 2 cell pellets add 75 μl of Laemmli sample buffer and resuspend the cells completely in the buffer.
  4. Boil all four samples for 5 minutes. Do not boil the molecular weight standard, but do boil the commercial β-galactosidase positive control along with your samples.
  5. Each electrophoresis chamber holds 2 gels, so 2 groups will run their gels together. Each group will load 6 lanes in one 4-15% gradient polyacrylamide gel according to the template below. Load 10µl of sample into each lane of your gel including a β-galactosidase positive control and the molecular weight standards. Be sure and take a copy of the key to the standards.
  6. Your instructor will connect the power source and set it to 200 volts. If no current reading (amps) appears, there is probably a leak in the upper chamber and extra running buffer has to be added to the upper chamber.
  7. After approximately 45 minutes, the tracking dye should have migrated to the bottom of the gel. TURN THE POWER OFF. Remove the gels from the reservoir. Your instructor will demonstrate how to remove the gel from between the plastic plates. Wear gloves when handling the gels because acrylamide is toxic.
  8. Place the gel in your plastic box and add enough Coomassie blue stain (10% acetic acid, 50% methanol, 0.25% Coomassie brilliant blue) to cover your gel and have it float freely. Stain with gentle rocking for approximately 30 minutes.
  9. Pour off the stain and add Destain solution (30% methanol and 10% acetic acid). Return the gel to the shaker and destain for at least 2 hours in full strength destain or overnight in destain solution diluted 1:2 with water.
  10. Your instructor will pour off the destain solution and photograph your gels using white light trans-illumination. Gel images will be posted to the conference as jpg files for incorporation into your lab reports.