BISC 219/F10: Lab 5: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 43: Line 43:
[[BISC 219/F10: Lab 2 Mutant Hunt | Lab 2: Mutant Hunt]]<br>
[[BISC 219/F10: Lab 2 Mutant Hunt | Lab 2: Mutant Hunt]]<br>
[[BISC 219/F10: Lab 3  | Lab 3: Linkage Test Part 1]]<br>
[[BISC 219/F10: Lab 3  | Lab 3: Linkage Test Part 1]]<br>
[[BISC 219/F10: Lab 4  | Lab 4: Linkage Test Part 2, Mapping and Complementation]]<br>
[[BISC 219/F10: Lab 4  | Lab 4: Linkage Test Part 2, Start Mapping and Complementation]]<br>
[[BISC 219/F10: Lab 5  | Lab 5: Mapping Con't]]<br>
[[BISC 219/F10: Lab 5  | Lab 5: Finish Complemetation; Mapping Con't]]<br>
[[BISC 219/F10: Lab 6 | Lab 6: DNA sequence analysis and bioinformatics; Mapping Con't]]<BR>
[[BISC 219/F10: Lab 6 | Lab 6: DNA sequence analysis and bioinformatics; Mapping Con't]]<BR>
[[BISC 219/F10: Lab 7  | Lab 7: Complete Mapping: Score]]<br>
[[BISC 219/F10: Lab 7  | Lab 7: Complete Mapping: Score]]<br>

Revision as of 18:13, 30 September 2010

Lab 5: Continue Mapping the Mutation

Mapping Because Fall Break is coming and we don't want you to have to come in to do work during break, please place 2 young adult double mutant hermaphrodites from a true breeding plate onto new each of 2 new plates. We will incubate your worms at lower temperature to slow them down until Lab 6.


Complete Complementation Analysis

Examine your complementation crosses. The main consideration is whether or not there are any MALE progeny of Dpy phenotype present in the progeny of cross #2
WHY male? Think about the hallmark of a sucessful cross! What else can hermaphrodites do other than mate with males - might be why you have Dpys on more than one plate.

For each plate consider that:

A) If your unknown mutation and your known mutation under study are in different genes (not allelic): the heterozygote male that you incorporated into Cross #2 will produce two types of gametes: type 1) with a dpy-u mutation and a wild type copy of the dpy-k gene and type 2) with wild type dpy-u gene and wild type dpy-k gene. One the other hand, the hermaphrodite you added will produce only one type of gamete-- we'll call it gamete type 3) with wild type dpy-u gene and a mutation in dpy-k.

These gametes can be combined so that you will have two possible genotypes. Combining gametes type 1 and 3 you get dpy-u from the male and wild type for the hermaphrodite so the progeny are heterozygous at the dpy-u locus (dpy-u/+) and for the dpy-k locus you get wild type from the male and dpy-k from the hermaphrodite (+/dpy-k). These individuals are phenotypically wild type since they have one wild type allele for each of the genes. Combining gametes 2 and 3 for the dpy-u locus you get wild type alleles from the male and the hermaphrodite (+/+) and for dpy-k you get wild type from the male and dpy-k from the hermaphrodite (+/dpy-k). These individuals are phenotypically wild type since they have at least one wild type allele for each of the genes. In conclusion if your unknown mutation (dpy-u) and your known mutation are in different genes (not allelic) will you observe any mutants in the progeny of cross #2?



B) If your unknown mutation (dpy-u) and one of the previously identified mutations under study (dpy-k) are in the same gene (allelic): the heterozygote male that you incorporated into Cross #2 will produce two types of gametes: type 1) with a dpy-u mutation and type 2) with wild type gene. One the other hand, the hermaphrodite you added will produce only one type of gamete we'll call it gamete type 3) with the dpy-k mutation.

These gametes can be combined so that you will have two possible genotypes. Combining gametes type 1 and 3 you get dpy-u from the male and dpy-k from the hermaphrodite so the genotype is (dpy-u/dpy-k). These individuals are phenotypically mutant. Combining gametes 2 and 3 you get wild type from the male and dpy-k from the hermaphrodite so the genotype is (+/dpy-k). These individuals are phenotypically wild type since they have one wild type allele. In conclusion if your unknown mutation (dpy-u) and your known mutation are in the same gene (allelic) will you observe mutants in the progeny of cross #2

Can you now id the dpy gene responsible for your Dpy phenotype? If you discovered that one of the reference 'dpy strains was allelic to your dpy mutation, congratulations! You now know the name of your mutated gene and are ready to start the next phase of our Forward Genetics study: characterization of the nature of the mutation and, perhaps, discovery of a functional area of the protein product. DNA sequence analysis and bioinformatics are next.

If none of your reference strains failed to complement (meaning that everything tested was non-allelic), you may not have learned much about the identity of the gene associated with your mutation but that is not, necessarily, a bad thing. Does that make it more likely that the gene you are characterizing has not been previously identified as associated with a Dpy phenotype and may be a newly characterized mutation? It will be a lot easier to publish this work if so:)

Assignment

Remember to check the Assignment section of the wiki for instructions about the graded assignment due in the next lab and check the Weekly Calendar for other work to accomplish before the next lab.

Links to Labs& Project Info

Series1:
Worm Info
Lab 1: Worm Boot Camp & Sex-Linked or Autosomal Start
Lab 2: Sex-Linked or Autosomal Finale
Series2:
Background: Classical Forward Genetics and Gene Mapping
Lab 2: Mutant Hunt
Lab 3: Linkage Test Part 1
Lab 4: Linkage Test Part 2, Start Mapping and Complementation
Lab 5: Finish Complemetation; Mapping Con't
Lab 6: DNA sequence analysis and bioinformatics; Mapping Con't
Lab 7: Complete Mapping: Score
Series3:
Schedule of Reverse Genetics Project
RNAi General Information
Media Recipes
Lab 5: Picking your gene to RNAi
Lab 6: Cloning your gene of interest
Lab 7: Picking your transformant
Lab 8: Plasmid purification and transformation
Lab 9: Induction of bacteria for RNAi
Lab 10: Scoring your worms and RNA purification
Lab 11: RT PCR reactions