Basson

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(News)
(News)
Line 15: Line 15:
== News ==
== News ==
-
Congratulations to Katrin Danielsen (MSc) for being accepted onto the PhD programme at the Institute of Child Health
 
== Publications in press ==
== Publications in press ==
Shea, K.L., Xiang, W., LaPorta, V.S., Licht, J.D., Keller, C., Basson, M.A. & Brack, A.S. (2010) Sprouty1 regulates self-renewal of the adult muscle stem cell pool during regeneration. '''Cell Stem Cell'''  in press.
Shea, K.L., Xiang, W., LaPorta, V.S., Licht, J.D., Keller, C., Basson, M.A. & Brack, A.S. (2010) Sprouty1 regulates self-renewal of the adult muscle stem cell pool during regeneration. '''Cell Stem Cell'''  in press.

Revision as of 15:32, 11 June 2011

Home        Contact        Lab Members        Publications        Research        Pictures        Links        Meetings and seminars       



Contents

Welcome to the Basson lab at King's College London

Our research is aimed at uncovering the signalling mechanisms that control morphogenesis of complex structures and organs in the developing embryo and newborn

The Basson laboratory is located on the 27th floor of Guy's Hospital in the Department of Craniofacial and Stem Cell Biology and affiliated with the MRC Centre for Developmental Neurobiology on Guy's Campus [1]

FGF signalling in development and disease

All organs in the body originate from relatively simple structures in the embryo. For example a simple epithelial tube, the neural tube, develops into the highly complex brain. The many forces and growth factors that act upon embryonic tissues are precisely coordinated to shape the morphogenesis of more complex structures. We are interested in understanding how signalling centres are established in the embryo and how signalling pathways are regulated during development. Current research projects in the lab primarily focus on the fibroblast growth factor (FGF) signalling pathway and our aim is to understand how deregulated FGF signalling results in birth defects and cellular malfunction. We are particularly interested in elucidating the functions of the Sprouty genes, which encode FGF antagonists; Tbx1, a T-box transcription factor implicated in DiGeorge syndrome and Chd7, a chromatin remodeller, mutated in CHARGE syndrome.

News

Publications in press

Shea, K.L., Xiang, W., LaPorta, V.S., Licht, J.D., Keller, C., Basson, M.A. & Brack, A.S. (2010) Sprouty1 regulates self-renewal of the adult muscle stem cell pool during regeneration. Cell Stem Cell in press.
Personal tools