Basson:Research

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Adult stem cell biology)
(Signalling and morphogenesis)
Line 3: Line 3:
-
The precise coordination of the many forces and growth factors acting upon embryonic tissues is required for the development of complex organs. We are interested in how intracellular signalling pathways are regulated during organogenesis. Many cell surface receptors use reversible tyrosine phosphorylation as a means of signal transduction. Studies in a number of biological systems have suggested that these signalling pathways are not merely ON/OFF switches but that subtle differences in signal strength and duration often result in profoundly different outcomes.
+
The precise coordination of the many forces and growth factors acting upon embryonic tissues is required for the development of complex organs. We are interested in how intracellular signalling pathways are regulated during organogenesis. Many cell surface receptors use reversible tyrosine phosphorylation as a means of signal transduction. Studies in a number of biological systems have suggested that these signalling pathways are not merely ON/OFF switches but that subtle differences in signal strength and duration often result in profoundly different outcomes. Recent evidence indicate that chromatin remodelling factors fine-tunes gene expression levels during development. We are interested in inderstanding the various functions of the CHD7 chromatin remodelling factor in brain development.
-
The broad aim of our research is to understand how intracellular signaling regulators of the Sprouty family are employed to coordinate morphogenesis of the cerebellum and pharyngeal pouches and how deregulated signalling leads to disease.
 
----
----
-
'''Cerebellar morphogenesis:''' The cerebellum is the brain’s control centre for motor coordination and defects in cerebellar development are often associated with ataxia or medulloblastoma, the most common type of childhood cancer. We are interested in how the cerebellum is constructed during embryonic and early postnatal development. Studies on conditional mid-hindbrain-specific Sprouty mutants have shown that these genes play important roles during postnatal cerebellar morphogenesis and we are investigating this process using inducible, conditional gene inactivation approaches in vivo.
+
'''Cerebellar morphogenesis:''' The cerebellum is the brain’s control centre for motor coordination and defects in cerebellar development are often associated with ataxia or medulloblastoma, the most common type of childhood cancer. We are interested in how the cerebellum is constructed during embryonic and early postnatal development. We are investigating this process using conditional gene inactivation approaches in vivo.
'''Supported by the [http://www.wellcome.ac.uk/ Wellcome Trust]'''
'''Supported by the [http://www.wellcome.ac.uk/ Wellcome Trust]'''
-
'''Research team: Tian Yu, Yuichiro Yaguchi'''
+
'''Researcher: Tian Yu'''
 +
----
 +
'''Adult stem cell function:''' Both regulators of intracellular signalling (e.g. Spry1) and chromatin remodelling factors are important for normal adult stem cell function. We are investigating the roles of these factors in adult stem cells in the muscle (in collaboration with Dr. Andrew Brack (Harvard) and brain.
 +
 +
'''Supported by the BBSRC'''
 +
 +
'''Researcher: Kieran Jones'''
----
----
-
'''Thymus organogenesis, pharyngeal pouch patterning and DiGeorge syndrome:''' Our recent experiments have indicated that several essential organs such as the thymus, parathyroid, middle ear and cranial sensory ganglia that develop wholly or in part from the pharyngeal apparatus exhibit multiple defects in Sprouty mutant mice. These same organs are affected in 22q11 deletion or DiGeorge syndrome and we are investigating the molecular and developmental basis of these defects in mouse embryos.'''
+
'''Thymus organogenesis, pharyngeal pouch patterning and DiGeorge syndrome:''' Our recent experiments have indicated that several essential organs such as the thymus, parathyroid, middle ear and cranial sensory ganglia that develop wholly or in part from the pharyngeal apparatus exhibit multiple defects in Sprouty mutant mice. These same organs are affected in 22q11 deletion or DiGeorge syndrome and we are investigating the molecular and developmental basis of these defects in mouse embryos. A current interest is the function of and interaction between Tbx1 and FGF signalling in the pharyngeal endoderm during pharyngeal pouch morphogenesis'''
'''Supported by the [http://www.mrc.ac.uk/index.htm Medical Research Council]'''
'''Supported by the [http://www.mrc.ac.uk/index.htm Medical Research Council]'''
-
'''Research team: Subreena Simrick, Jenny Gardiner, Abigail Jackson'''
+
'''Research team: Abigail Jackson'''
----
----

Revision as of 11:32, 10 December 2011

Home        Contact        Lab Members        Publications        Research        Pictures        Links        Meetings and seminars       


Signalling and morphogenesis

The precise coordination of the many forces and growth factors acting upon embryonic tissues is required for the development of complex organs. We are interested in how intracellular signalling pathways are regulated during organogenesis. Many cell surface receptors use reversible tyrosine phosphorylation as a means of signal transduction. Studies in a number of biological systems have suggested that these signalling pathways are not merely ON/OFF switches but that subtle differences in signal strength and duration often result in profoundly different outcomes. Recent evidence indicate that chromatin remodelling factors fine-tunes gene expression levels during development. We are interested in inderstanding the various functions of the CHD7 chromatin remodelling factor in brain development.



Cerebellar morphogenesis: The cerebellum is the brain’s control centre for motor coordination and defects in cerebellar development are often associated with ataxia or medulloblastoma, the most common type of childhood cancer. We are interested in how the cerebellum is constructed during embryonic and early postnatal development. We are investigating this process using conditional gene inactivation approaches in vivo.

Supported by the Wellcome Trust

Researcher: Tian Yu


Adult stem cell function: Both regulators of intracellular signalling (e.g. Spry1) and chromatin remodelling factors are important for normal adult stem cell function. We are investigating the roles of these factors in adult stem cells in the muscle (in collaboration with Dr. Andrew Brack (Harvard) and brain.

Supported by the BBSRC

Researcher: Kieran Jones


Thymus organogenesis, pharyngeal pouch patterning and DiGeorge syndrome: Our recent experiments have indicated that several essential organs such as the thymus, parathyroid, middle ear and cranial sensory ganglia that develop wholly or in part from the pharyngeal apparatus exhibit multiple defects in Sprouty mutant mice. These same organs are affected in 22q11 deletion or DiGeorge syndrome and we are investigating the molecular and developmental basis of these defects in mouse embryos. A current interest is the function of and interaction between Tbx1 and FGF signalling in the pharyngeal endoderm during pharyngeal pouch morphogenesis

Supported by the Medical Research Council

Research team: Abigail Jackson


Chromatin remodelling and brain development

Patients affected by CHARGE syndrome suffer from a number of brain defects, including autism spectrum disorders, learning difficulties and cerebellar hypoplasia. We are using mouse models for this syndrome in which the Chd7 gene is mutated to elucidate the function of CHD7 in brain development.

Research team: Tian Yu, Katrin Danielsen, Eugenia Sanz Smachetti

Adult stem cell biology

We recently showed, in collaboration with the Brack lab at Harvard, that Sprouty1 plays an important role in adult muscle stem cells or "satellite cells". This work is continuing in collaboration with the Brack lab. In addition, we are investigating the role of Spry1 in adult neural stem cells in the adult brain.

Research team: Kieran Jones, Tian Yu

Personal tools