Beauchamp

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
<h3>Home</h3>
<h3>Home</h3>
-
The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects. Many complex tasks require us to integrate information from multiple modalities. For instance, when trying to understanding spoken language, we make use of both the auditory information we hear from the spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as when conversing in a noisy room. While we primarily study healthy young adults, we are also interested in examining other populations. For instance, very young children use primarily the auditory information to understand language, but in normal development children learn to associate mouth movements with speech and the visual speech information becomes more important. As hearing declines with age, visual information becomes even more important. Deaf children are commonly implanted with a cochlear implant to allow them to hear, but the lack of auditory input to multisensory areas at a young age sometimes prevents them from from properly integrating the auditory and visual speech information. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. Our main supplemental technique is transcranial magnetic stimulation, which temporarily inactivates a region of the brain. By combining fMRI and TMS in the same subject, we can determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy is also an important tool to understand multisensory integration and visual perception, because it allows direct recording of the activity of small populations of neurons, as opposed to the indirect nature of the BOLD signal. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information, and for the visual perception of complex movements.  
+
The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects. Many complex tasks require us to integrate information from multiple modalities. For instance, when trying to understanding spoken language, we make use of both the auditory information we hear from the spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as when conversing in a noisy room. Even in healthy young adults, there is considerable variability in people's ability to integration auditory and visual speech, but this difference in even more pronounced when other populations are examined. Very young children rely exclusively on auditory information to understand language, but in normal lifespan development the visual speech information play a greater role, sometimes becoming dominant as hearing declines with age. Different clinical populations also offer intriguing clues: deaf children are commonly implanted with a cochlear implant to allow them to hear, but the lack of auditory input to multisensory areas at a young age sometimes prevents them from from properly integrating the auditory and visual speech information. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. Our main supplemental technique is transcranial magnetic stimulation, which temporarily inactivates a region of the brain. By combining fMRI and TMS in the same subject, we can determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Another useful technique is electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy, because it allows direct recording of the activity of small populations of neurons. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information and for the visual perception of complex movements, such as mouth movements.  

Revision as of 20:40, 21 February 2011

Brain picture
Beauchamp Lab


Home

The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects. Many complex tasks require us to integrate information from multiple modalities. For instance, when trying to understanding spoken language, we make use of both the auditory information we hear from the spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as when conversing in a noisy room. Even in healthy young adults, there is considerable variability in people's ability to integration auditory and visual speech, but this difference in even more pronounced when other populations are examined. Very young children rely exclusively on auditory information to understand language, but in normal lifespan development the visual speech information play a greater role, sometimes becoming dominant as hearing declines with age. Different clinical populations also offer intriguing clues: deaf children are commonly implanted with a cochlear implant to allow them to hear, but the lack of auditory input to multisensory areas at a young age sometimes prevents them from from properly integrating the auditory and visual speech information. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. Our main supplemental technique is transcranial magnetic stimulation, which temporarily inactivates a region of the brain. By combining fMRI and TMS in the same subject, we can determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Another useful technique is electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy, because it allows direct recording of the activity of small populations of neurons. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information and for the visual perception of complex movements, such as mouth movements.


You can reach us at:

 Department of Neurobiology and Anatomy
 University of Texas Medical School at Houston
 6431 Fannin Street, Suite G.550G
 Houston, Texas 77030
Personal tools