Beauchamp: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(23 intermediate revisions by the same user not shown)
Line 4: Line 4:
|-valign="top"
|-valign="top"
|width=400px style="padding: 5px; background-color: #ffffff; border: 2px solid #CC6600;" |
|width=400px style="padding: 5px; background-color: #ffffff; border: 2px solid #CC6600;" |
<h3>Home</h3>
The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects; anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information and for the perception of complex visual motion, such as mouth movements. Many everyday tasks require us to integrate information from multiple modalities, such as during conversation when we make use of both the auditory information we hear in spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as in a noisy room. To understand the neural mechanisms of multisensory integration and visual perception, we use a variety of methods, including electrocorticography (ECoG), transcranial magnetic stimulation (TMS) and blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). Through these sophisticated studies, we hope to unlock one of nature's great mysteries: how the brain performs amazing computational feats, such as understanding speech, that allow us to make sense of the auditory and visual world around us. Every advance in deepening our knowledge of these processes is not only exciting for its own sake but will also help children and patients with language and perceptual difficulties.


The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects. Many everyday tasks require us to integrate information from multiple modalities, such as during conversation when we make use of both the auditory information we hear in spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as in a noisy room. Even in healthy young adults, there is considerable variability in people's ability to integrate auditory and visual speech, but this difference in even more pronounced when other populations are examined. Very young children rely exclusively on auditory information to understand language, but in normal lifespan development visual speech plays an increasing role, sometimes becoming dominant as hearing declines with age. Other populations also show interesting differences: deaf children commonly use a cochlear implant to allow them to hear, but the early lack of auditory input sometimes prevents them from ever learning to properly integrate auditory and visual speech. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. Our main supplemental technique is transcranial magnetic stimulation, which temporarily inactivates a region of the brain. By combining fMRI and TMS in the same subject, we can determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Other useful technique is electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy, because it allows direct recording of the activity of small populations of neurons. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information and for the perception of complex visual motion, such as mouth movements.  
[[Image: MSB_Presenting.jpg | 300px]]
[[Image: CowboyScanner.jpg | 200px]]


Left: Michael Beauchamp presenting at IMRF 2014 in Amsterdam.
Right: The lab logo!


You can reach us at: Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, 6431 Fannin Street, Suite G.550G, Houston, Texas 77030. Telephone (713) 500-5978.
[[Image:UTHealthLogo.jpg|120px|UT Health Logo]]   
[[Image:BCMlogo.png|120px|BCM logo]]   
[[Image:Ricelogo.jpg|120px|Rice logo]]   
 
Lab members are affiliated with the University of Texas Medical School at Houston, Baylor College of Medicine, and Rice University.
You can reach us at: BeauchampLab (at) gmail.com

Revision as of 10:31, 7 November 2014

Brain picture
Beauchamp Lab



The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects; anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information and for the perception of complex visual motion, such as mouth movements. Many everyday tasks require us to integrate information from multiple modalities, such as during conversation when we make use of both the auditory information we hear in spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as in a noisy room. To understand the neural mechanisms of multisensory integration and visual perception, we use a variety of methods, including electrocorticography (ECoG), transcranial magnetic stimulation (TMS) and blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). Through these sophisticated studies, we hope to unlock one of nature's great mysteries: how the brain performs amazing computational feats, such as understanding speech, that allow us to make sense of the auditory and visual world around us. Every advance in deepening our knowledge of these processes is not only exciting for its own sake but will also help children and patients with language and perceptual difficulties.

Left: Michael Beauchamp presenting at IMRF 2014 in Amsterdam. Right: The lab logo!

UT Health Logo BCM logo Rice logo

Lab members are affiliated with the University of Texas Medical School at Houston, Baylor College of Medicine, and Rice University. You can reach us at: BeauchampLab (at) gmail.com