Beauchamp: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 6: Line 6:
<h3>Home</h3>
<h3>Home</h3>


The Beauchamp Lab studies the neural mechanisms for visual perception and multisensory integration in human subjects. Many complex tasks require us to integrate information from multiple modalities. For instance, when trying to understanding spoken language, we make use of both the auditory information in the heard speech and the visual information from the facial movements of the speaker. This multisensory integration is especially important under conditions in which one modality is degraded, such as a loud room. Understanding the neural mechanisms for multisensory integration under these conditions may help us treat patients with sensory deficits, such as the decreased visual and auditory sensitivity common in aging. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. It is particularly useful to combine fMRI with electrical or magnetic stimulation of the brain to determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy is also an important tool, because it allows direct recording of the activity of small populations of neurons, as opposed to the indirect nature of the BOLD signal. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for multisensory integration and visual perception of complex movements.
The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects. Many complex tasks require us to integrate information from multiple modalities. For instance, when trying to understanding spoken language, we make use of both the auditory information we hear from the spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as when conversing in a loud room. While we study primarily healthy adults, we are also interested in examining other populations. For instance, very young children use primarily the auditory information to understand language, but in normal development children learn to associate mouth movements with speech and the visual speech information becomes more important. As hearing declines with age, visual information becomes even more important. Deaf children are commonly implanted with a cochlear implant to allow them to hear, but the lack of auditory input to multisensory areas at a young age sometimes prevents them from from properly integrating the auditory and visual speech information. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. Our main supplemental technique is transcranial magnetic stimulation, which temporarily inactivates a region of the brain. By combining fMRI and TMS in the same subject, we can determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy is also an important tool to understand multisensory integration and visual perception, because it allows direct recording of the activity of small populations of neurons, as opposed to the indirect nature of the BOLD signal. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information, and for the visual perception of complex movements.  





Revision as of 18:33, 21 February 2011

Brain picture
Beauchamp Lab



Home

The Beauchamp Lab studies the neural mechanisms for multisensory integration and visual perception in human subjects. Many complex tasks require us to integrate information from multiple modalities. For instance, when trying to understanding spoken language, we make use of both the auditory information we hear from the spoken speech and the visual information from the facial movements of the talker. Multisensory integration is especially important under conditions in which one modality is degraded, such as when conversing in a loud room. While we study primarily healthy adults, we are also interested in examining other populations. For instance, very young children use primarily the auditory information to understand language, but in normal development children learn to associate mouth movements with speech and the visual speech information becomes more important. As hearing declines with age, visual information becomes even more important. Deaf children are commonly implanted with a cochlear implant to allow them to hear, but the lack of auditory input to multisensory areas at a young age sometimes prevents them from from properly integrating the auditory and visual speech information. To understand the neural basis of multisensory integration, the primary method used is blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). fMRI experiments are conducted using the research-dedicated 3 tesla scanner in the UT MRI Center adjacent to the lab. Because of the limited temporal and spatial resolution of fMRI, we often combine it with other methods. Our main supplemental technique is transcranial magnetic stimulation, which temporarily inactivates a region of the brain. By combining fMRI and TMS in the same subject, we can determine if a region of activity observed in fMRI is truly important for the cognitive operation of interest. Electrical recording from patients implanted with electrodes for the treatment of medically intractable epilepsy is also an important tool to understand multisensory integration and visual perception, because it allows direct recording of the activity of small populations of neurons, as opposed to the indirect nature of the BOLD signal. Anatomically, the primary focus of the lab is on the superior temporal sulcus, a brain area critical for both the integration of auditory, visual, and somatosensory information, and for the visual perception of complex movements.


You can reach us at:

 Department of Neurobiology and Anatomy
 University of Texas Medical School at Houston
 6431 Fannin Street, Suite G.550G
 Houston, Texas 77030