BioMicroCenter:News: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
mNo edit summary
(17 intermediate revisions by 2 users not shown)
Line 7: Line 7:
|valign=top style="width:60%;padding-right:10px;"|  
|valign=top style="width:60%;padding-right:10px;"|  
== BioMicro Center News ==
== BioMicro Center News ==
=== MAY 2014 ===
Some quick bullet pointed updates from BioMicro. We’re in the middle of rolling out several new initiatives right now that will hopefully be in the July newsletter.
* We are now offering sample prep using the [[BioMicroCenter:Nextera|Nextera XT]] system from Illumina. This modification of the Nextera uses only 1ng of input DNA (instead of the typical 50ng) and is significantly less expensive. Tuning it for insert size is somewhat more challenging than standard Nextera and so it should not be used where insert size is critical.
* [[BioMicroCenter:PricingFY2015|Pricing for 2015]] is up on our website. There is a link at the bottom of the pricing page.
* The Wafergen system is no longer available in the BioMicro Center. There is a system at Children’s Hospital if you absolutely need the Wafergen system. Most applications can also be done on the [[BioMicroCenter:RTPCR|Fluidigm BioMark]], which we still have in the lab.
* This month, we say goodbye to Scott Morin who will be leaving for medical school. Leigh Manley, who has transferred over from the Biopolymer core, will be taking over Illumina processing.
* Finally, the BioMicro Center will be shifting over to iLabs in the coming months. We are still early in the process but we would encourage everyone to [https://mit-ki.ilabsolutions.com/account/login register for iLabs] to help smooth the transition.
=== MARCH 2014 ===
A couple highlights of things going on in the center.
* We are resuming the [[BioMicroCenter:Technology_Seminar_Series|Technology Seminar Series]] this week with Roche speaking on Wednesday at lunch. The talk will focus on non-standard applications of the Light Cycler (SNP detection, etc).
* The Fraenkel lab has very kindly donated their [[BioMicroCenter:Covaris|Covaris sonicator]] to the core and we will be putting it under a service contract. We will need to put in place a small fee to cover the cost of the contract - likely starting in July. Training for new users will be available through [[BioMicroCetner:People|Shmulik]].
* We’ve generally had positive feedback about our new AA/BioA form and we’re expanding the new excel forms to include Illumina sequencing. [[BioMicroCenter:Forms|This new form will cover most types of sample preparation.]]
* Illumina is raising the prices on all of their sequencing reagents starting April 1. We lowered our prices very aggressively last year so, in order to break even, [[BioMicroCenter:Pricing#SEQUENCING|we will have adjust our prices slightly higher.]]
===  JANUARY, 2014 ===
I hope everyone had a fantastic holiday. We have several updates to let you know about. Since there are a few more than usual, I’m just going to give you the bullet list which you can check out on our website.
* Upgrade the [[BioMicroCenter:Software#BMC-BCC_Pipeline|basic analysis pipeline for Illumina]] – corrects some bugs, mostly with data overwrite problems, improves speed and provides more QC data, including GC bias checks on all HiSeq runs.
* New Co-op students -  [[BioMicroCenter:People|Ani Webb and Sam Kaplan]] started this week.
* New protocol for the Advanced Analytical allows us to do [[BioMicroCenter:Advanced_analytical_Fragment_analyzer|picoRNA]] samples on the machine. This cuts the cost of the analysis in half. We can still do the analysis on the BioAnalyzer if you prefer.
* If you run a lot of AA samples, you can lower your cost significantly by submitting the samples preloaded in a plate for the machine (contact us at biomicro@mit.edu if you are interested in this).
* Testing out a [[BioMicroCenter:Forms|new sample submission form]] based on Excel instead of Word. We’re piloting it with the BioAnalyzer form.
* We’re also trying to improve communication by sending database snapshots to users doing Illumina sequencing to make sure we have all the data entered correctly.
* Data storage costs have gone down significantly to [[BioMicroCenter:Pricing|$280/TB/y]]
* There are several IAP sessions highlighting software packages available from the MIT libraries. These include [ http://student.mit.edu/searchiap/iap-BD6D0CF8E096B284E0400312852F4A61.html Ingenuity Pathway Analysis,] [http://student.mit.edu/searchiap/iap-BD6D0CF8DC3DB284E0400312852F4A61.html GeneGO,] and our own [http://student.mit.edu/searchiap/iap-9289af8d41aa4e8e01425c9c633508c6.html training session on using Rous]
=== SEPTEMBER 12, 2013 ===
=== SEPTEMBER 12, 2013 ===


Line 67: Line 97:
Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs '''must''' acknowledge their core grants for work done in the core with the following language.  
Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs '''must''' acknowledge their core grants for work done in the core with the following language.  
* KI ''"This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"''  
* KI ''"This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"''  
* CEHS ''"This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"''
* [[BioMicroCenter:CEHS13|CEHS]] ''"This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"''


== PUBLICATIONS ==
== PUBLICATIONS ==
'''2014'''<BR><BR>
<biblio>
#Paper1 pmid=24501120 <!- RPA Walker->
#Paper2 pmid=24501121 <!- RPA Walker->
#Paper3 pmid=24249727 <!- VB Saeij->
#Paper4 pmid=24757057 <!- RPA.VB Samson->
#Paper5 pmid=24763590 <!- HD Chisholm->
#Paper6 pmid=24899568  <!- VB.SL Dedon->
#Paper7 pmid=24931974 <!- VB Burge->
#Paper8 pmid=24413286 <!- RPA.SL Tannenbaum Fox->
 
</biblio>
'''2013'''<BR><BR>
'''2013'''<BR><BR>
<biblio>
<biblio>
Line 80: Line 125:
#Paper7 pmid=24009526 <!- CW Lees->
#Paper7 pmid=24009526 <!- CW Lees->
#Paper8 pmid=23873940 <!- CW Jacks2->
#Paper8 pmid=23873940 <!- CW Jacks2->
#Paper9 pmid=24249727 <!- VB Saeij->
#Paper10 pmid=24134150 <!- SL.RPA Tannenbaum->
#Paper10 pmid=24134150 <!- SL.RPA Tannenbaum->
#Paper11 pmid=24367253 <!- VB Saeij->
 
#Paper12 pmid=23703590 <!- SM Fraenkel ->
</biblio>
</biblio>
'''2012'''<BR><BR>
'''2012'''<BR><BR>

Revision as of 08:58, 15 July 2014

HOME -- SEQUENCING -- LIBRARY PREP -- HIGH-THROUGHPUT -- COMPUTING -- OTHER TECHNOLOGY

.

Welcome to the MIT BIOMICRO CENTER

BioMicro Center News

MAY 2014

Some quick bullet pointed updates from BioMicro. We’re in the middle of rolling out several new initiatives right now that will hopefully be in the July newsletter.

  • We are now offering sample prep using the Nextera XT system from Illumina. This modification of the Nextera uses only 1ng of input DNA (instead of the typical 50ng) and is significantly less expensive. Tuning it for insert size is somewhat more challenging than standard Nextera and so it should not be used where insert size is critical.
  • Pricing for 2015 is up on our website. There is a link at the bottom of the pricing page.
  • The Wafergen system is no longer available in the BioMicro Center. There is a system at Children’s Hospital if you absolutely need the Wafergen system. Most applications can also be done on the Fluidigm BioMark, which we still have in the lab.
  • This month, we say goodbye to Scott Morin who will be leaving for medical school. Leigh Manley, who has transferred over from the Biopolymer core, will be taking over Illumina processing.
  • Finally, the BioMicro Center will be shifting over to iLabs in the coming months. We are still early in the process but we would encourage everyone to register for iLabs to help smooth the transition.


MARCH 2014

A couple highlights of things going on in the center.

  • We are resuming the Technology Seminar Series this week with Roche speaking on Wednesday at lunch. The talk will focus on non-standard applications of the Light Cycler (SNP detection, etc).
  • The Fraenkel lab has very kindly donated their Covaris sonicator to the core and we will be putting it under a service contract. We will need to put in place a small fee to cover the cost of the contract - likely starting in July. Training for new users will be available through Shmulik.
  • We’ve generally had positive feedback about our new AA/BioA form and we’re expanding the new excel forms to include Illumina sequencing. This new form will cover most types of sample preparation.
  • Illumina is raising the prices on all of their sequencing reagents starting April 1. We lowered our prices very aggressively last year so, in order to break even, we will have adjust our prices slightly higher.

JANUARY, 2014

I hope everyone had a fantastic holiday. We have several updates to let you know about. Since there are a few more than usual, I’m just going to give you the bullet list which you can check out on our website.

  • Upgrade the basic analysis pipeline for Illumina – corrects some bugs, mostly with data overwrite problems, improves speed and provides more QC data, including GC bias checks on all HiSeq runs.
  • New Co-op students - Ani Webb and Sam Kaplan started this week.
  • New protocol for the Advanced Analytical allows us to do picoRNA samples on the machine. This cuts the cost of the analysis in half. We can still do the analysis on the BioAnalyzer if you prefer.
  • If you run a lot of AA samples, you can lower your cost significantly by submitting the samples preloaded in a plate for the machine (contact us at biomicro@mit.edu if you are interested in this).
  • Testing out a new sample submission form based on Excel instead of Word. We’re piloting it with the BioAnalyzer form.
  • We’re also trying to improve communication by sending database snapshots to users doing Illumina sequencing to make sure we have all the data entered correctly.
  • Data storage costs have gone down significantly to $280/TB/y
  • There are several IAP sessions highlighting software packages available from the MIT libraries. These include [ http://student.mit.edu/searchiap/iap-BD6D0CF8E096B284E0400312852F4A61.html Ingenuity Pathway Analysis,] GeneGO, and our own training session on using Rous


SEPTEMBER 12, 2013

I hope everyone had a great summer. A couple new things to tell you about with the start of the academic year. First, we have two new bioinformatics scientists on board. Dr. Duan Ma comes to us from the Dept of Biostatistics at Washington University as well as several years in industry where she worked on a broad variety of bioinformatics problems as well as cloud computing solutions. Dr. Jie Wu did his PhD in computational biology Cold Spring Harbor where he focused on developing algorithms for RNAseq. Both Jie and Duan are located in 68-317, so please stop by and say hello.

One new product to tell you about is new MiSeq v3 kits which just came out. These kits increase read counts to 25m from the current 15m maximum. The kits only come in 150 and 600 nt sizes and are somewhat more expensive than the current reagents. The changes to the MiSeq do not help v2 kits and they cannot reach the 25m threshold. We will be offering both the v2 and v3 kits for a short while, but our expectation is the v2 kits will be discontinued by Illumina in the not so distant future. New pricing for the v3 kits is up on our BioMicroCenter:Pricing pricing site.

Also on the sequencing front, we have some evidence that the CG bias issues we were seeing on the HiSeq may not have been totally resolved. We are in the middle of implementing some significant changes in our control lane chemistry in collaboration with Illumina. These will at least allow us to monitor the situation very aggressively and detect any changes in GC bias by using a more complex mixture of samples, instead of only phiX. As I mentioned in our April newsletter, if you have reason to believe your data was compromised by this issue, please come talk to us so we can help get replacement kits to get your samples rerun as soon as possible. The new control lane is in early beta but is being included on all HiSeq flowcells now. We do want to thank the Laub, Niles and Walker labs for DNA to help us in this effort.

Finally, the Technology Seminar Series will return this year. We begin next Wednesday with Wafergen talking about the Smartchip system. The seminar will be at noon in 68-180 and lunch will be provided. We’re hoping to have seminars every month throughout the year so be sure to look for them on our website.

JUNE 17, 2013

First, we have a number of BioMicroCenter:People staffing changes to tell you about. The end of June will see three members of the core moving on. Ryan Abo, one of our informatics scientists, will be heading to the Dana Farber and Paraj Patel and Pierrick Millet will be returning to Northeastern. Our new co-op students, Ashley Machado and Alexander Soltoff will be starting July 1st. We are currently undertaking a job search to look for Ryan’s replacement. If you have any concerns about the personnel changes, please feel free to contact me.

In a piece of good news, the root cause of the critical failures we have had with our MiSeq for the last month plus with homopolymer samples appear to have been identified and should be fixed today. A recent software upgrade that was supposed to improve the handling of homopolymeric samples apparently failed to install properly, resulting in a mix of pipeline versions that was unable to handle the sequences at all. I do want to thank everyone for their patience as we have struggled with this problem and assure everyone we will move through our backlog on the MiSeq as fast as we possibly can. I also want to thank the techs in the lab, especially Scott Morin, who have been working weekends to try to get as many samples through the MiSeq as possible.

Finally, with the end of the fiscal year, our annual price adjustments are due to take effect on July 1st. You can find a complete list of the new prices here . The largest change is a reduction in cost for HiSeq sequencing, especially for longer reads. This is associated with a significant decrease in the amount of time we will be holding data on our servers and with the recent switch from fastq + SAM file formats to retaining only BAM files. (see January 2013 notes).


APRIL 20, 2013

We have noticed a number of technical issues with some Illumina runs. We want to share with you to make sure you are aware of some changes and newly identified technical issues with the platform and what we are doing to correct them where we can. All of these changes are from the Illumina side and none were especially well documented (some not at all). These issues are unlikely to be limited to the BMC, so samples from elsewhere on campus or around the country may also have these issues. Please read this as it may have some impact on your analyses.

Just to begin, all of these changes are subtle and not obvious in most cases directly from the sequencers. It was the rare cases that had dramatic effects that caused us to notice them. If you decide you need to have samples rerun, we will work with you to try to get Illumina to replace the reagents and to get the samples rerun. Unfortunately, there is no way we can possibly do bulk reruns of several months’ worth of studies.

The most concerning issue is a dropout of GC rich regions in clustering. This has been an on-again off-again issue with Illumina that we have addressed over a year ago by improvements in amplification cycling conditions and enzyme selection. Some time, several months ago (we do not have a precise window), Illumina appears to have changed the chemistry of one of their clustering components and that caused a major change in performance on GC rich areas. This can be seen as an absence of reads from very GC rich areas but, because these areas are rare in most genomes, they cannot be seen on the flowcell wide metrics. This issue is found on current HiSeq and MiSeqV2 kits but not on MiSeqV1 kits nor, we suspect, on the GAII. We have been able to address this problem by adding a brief boiling step during NaOH denaturation of the samples and have implemented this as SOP starting about two weeks ago. This drop out of regions can cause significant issues for several studies – most notably ChIP analyses – when you are comparing data from different chemistries.

A second concern is one that has been reported in the community but we have not identified on our machines – yet – where samples from a run are being observed in the following run as minor contaminants. This issue is limited to the MiSeq and HiSeq2500 (we do not have the latter) where the tubes that add sample to the flowcell are not changed. This contamination is reported to be <1% and so would not show up on our quality metrics. However, if your MiSeq analyses are being based on finding a few reads in a large pool of discarded data or you are doing a number of sequential runs, you may wish to validate your data more carefully using an alternative technique such as qPCR or sanger sequencing. There is currently no technical fix to this problem.

A third issue has been around for a while though we had not appreciated the implications. Illumina’s newer versions of basecalling software have become less capable of handling uniform sequence (all A’s for example). In earlier versions, only 5 basepairs of variability were needed and intensities could be determined by the control lane we run on all HiSeq flowcells. Now, it appears that nt 1-25 all must have representation of all 4 bases at all positions, even with a control lane. This has always been an issue on the MISeq and we have solved it by spiking in 30%PhiX in the lane (as opposed to our normal 0.1% spike in). Similar solutions can be used on the HiSeq. Given this change, we are re-evaluating whether there is value in using the 8th lane as a control. The latest version of MiSeq software (only a couple days old) supposedly allows us to lower the fraction to 5%, but how successful this is remains to be seen. Base rearrangement with the GAII allows the GAII to avoid this issue.

Finally, it appears that custom priming on the MiSeq is not the same as custom priming on the HiSeq and GAII. It can still be done, but the Tm requirement is much higher. Primers that work on the HiSeq may fail on the MiSeq. As long as your Tm matches or exceeds the Tm used for Illumina primers, the MiSeq should work, but the MiSeq’s different chemistry (formamide instead of heat denaturation) is less forgiving.

In summary, we have a number of technical challenges that may (or may not) effect you and we want to make sure you have all the information we can give you. I want to thank the researchers and labs that have been very patient as we have struggled running their samples which led us to identify these problems. If you believe these issues have effected your data, please do not hesitate to contact me and we can discuss how to move forward.


MARCH 11, 2013

Quick update from BioMicro:

The Wafergen qPCR system is now operational. We have done a couple pilot experiments so far and it does seem to work, if there are a few more limitations than we anticipated. We are working with Wafergen to see how many of these can be alleviated but you are more than welcome to try it out and see if it would be useful to you. They have given us quite competitive pricing that is a lot lower than the cost for the Fluidigm BioMark . Please email us if you are interested in training.


JANUARY 9, 2013

Happy new years to everyone. A couple new things happening in BioMicro that we want to make everyone aware of.

First, this month begins a year long experiment in joining the BioMicro Center Informatics team and the KI Bioinformatics and Computing Core in to a single team. Our two teams have been collaborating for several years, sharing computational infrastructure, etc. but this year we will be formalizing and expanding the relationship with the goal of creating a more efficient unified core. Informatics analysis requests should still be sent to Charlie Whittaker or to myself as usual, but will be spread across the joint team based on expertise and on availability. You are also, as always, welcome to contact any of the informatics scientists directly. We hope this will allow us to reduce waiting times and to keep costs under control.

During the trial period (and hopefully going forward), pricing for informatics will be available in two flavors. First, for projects needing routine work, the subsidized rate will be $70/h for all CORE members (Biology, BE, KI, CEHS). For more involved projects, we have second option to purchase a “share” of the informatics team. This is an annual commitment for a fraction of an informaticist and will cost $960/mo for an average of 4h/week of informatics support. The monthly usage levels do not have to be exact and can be used in large blocks. The hours in the share can be used with any member of the team and the informaticist can vary from project to project.

Finally, and importantly, we will be changing the way we are storing Illumina sequencing data long term. In the past, we have saved the fastq, sam and bam files, along with the quality control data, in a zipped file. These zipped files now occupy over 50TB of storage which is limiting how we are able to handle new sequencing runs. To address this, we will be deleting the fastq and sam files from the archive and storing only the binary bam and quality control files. The fastq and sam files can be regenerated rapidly from the bam files using Picard and SamTools (though reads may not be in the same order). As always, we strongly encourage you to keep your own copy of the Illumina data and use our version only as a backup. We will begin this conversion next week. If you have any concerns, please do not hesitate to contact me.



ABOUT THE BIOMICRO CENTER

The MIT BioMicro Center was founded in 2000 as the core bio-fabrication and microarray processing facility at MIT. The Center is a joint endeavor between the Department of Biology, the Koch Institute for Integrative Cancer Research, the Department of Biological Engineering and the MIT Center for Environmental Health Sciences. The BioMicro Center offers a wide range of genomic services to researchers at MIT. The majority of services rendered pertain to massively parallel sequencing using the Illumina platform (both library preparation and sequencing). Commercial array processing and include both the Affymetrix Gene Chip and Agilent DNA array platforms are also part of our portfolio. Real-time PCR and Agilent BioAnalyzer services are available in the facility both as services available to researchers, as well as for quality control of microarray and sequencing samples. In addition, the Center has a presence in high-throughput screening with robotics and plate reading as well as informatics and computational support. The BioMicro Center serves the Koch Institute as the MicroArray Technologies Core and as part of the Bioinformatics and Computing Core and the MIT Center for Environmental Health Sciences as part of the Genomics and Imaging Core

Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs must acknowledge their core grants for work done in the core with the following language.

  • KI "This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"
  • CEHS "This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"

PUBLICATIONS

2014

  1. Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, and Walker GC. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3561-6. DOI:10.1073/pnas.1400450111 | PubMed ID:24501120 | HubMed [Paper1]
  2. De Nisco NJ, Abo RP, Wu CM, Penterman J, and Walker GC. Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3217-24. DOI:10.1073/pnas.1400421111 | PubMed ID:24501121 | HubMed [Paper2]
  3. Hassan MA, Butty V, Jensen KD, and Saeij JP. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages. Genome Res. 2014 Mar;24(3):377-89. DOI:10.1101/gr.166033.113 | PubMed ID:24249727 | HubMed [Paper3]
  4. Nagel ZD, Margulies CM, Chaim IA, McRee SK, Mazzucato P, Ahmad A, Abo RP, Butty VL, Forget AL, and Samson LD. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1823-32. DOI:10.1073/pnas.1401182111 | PubMed ID:24757057 | HubMed [Paper4]
  5. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, and Chisholm SW. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014 Apr 25;344(6182):416-20. DOI:10.1126/science.1248575 | PubMed ID:24763590 | HubMed [Paper5]
  6. Cao B, Chen C, DeMott MS, Cheng Q, Clark TA, Xiong X, Zheng X, Butty V, Levine SS, Yuan G, Boitano M, Luong K, Song Y, Zhou X, Deng Z, Turner SW, Korlach J, You D, Wang L, Chen S, and Dedon PC. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat Commun. 2014 Jun 5;5:3951. DOI:10.1038/ncomms4951 | PubMed ID:24899568 | HubMed [Paper6]
  7. Äijö T, Butty V, Chen Z, Salo V, Tripathi S, Burge CB, Lahesmaa R, and Lähdesmäki H. Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinformatics. 2014 Jun 15;30(12):i113-20. DOI:10.1093/bioinformatics/btu274 | PubMed ID:24931974 | HubMed [Paper7]
  8. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, and Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014 Mar;122(3):284-91. DOI:10.1289/ehp.1307429 | PubMed ID:24413286 | HubMed [Paper8]
All Medline abstracts: PubMed | HubMed

2013

  1. Gravina MT, Lin JH, and Levine SS. Lane-by-lane sequencing using Illumina's Genome Analyzer II. Biotechniques. 2013 May;54(5):265-9. DOI:10.2144/000114032 | PubMed ID:23662897 | HubMed [Paper1]
  2. Kelly L, Ding H, Huang KH, Osburne MS, and Chisholm SW. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 2013 Sep;7(9):1827-41. DOI:10.1038/ismej.2013.58 | PubMed ID:23657361 | HubMed [Paper2]
  3. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, and Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013 Jan 31;152(3):570-83. DOI:10.1016/j.cell.2013.01.003 | PubMed ID:23352431 | HubMed [Paper3]
  4. Gurtan AM, Ravi A, Rahl PB, Bosson AD, JnBaptiste CK, Bhutkar A, Whittaker CA, Young RA, and Sharp PA. Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes Dev. 2013 Apr 15;27(8):941-54. DOI:10.1101/gad.215376.113 | PubMed ID:23630078 | HubMed [Paper4]
  5. Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG, Crowley D, Whittaker CA, Meyerson M, Kimura S, and Jacks T. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell. 2013 Apr 25;50(2):185-99. DOI:10.1016/j.molcel.2013.02.018 | PubMed ID:23523371 | HubMed [Paper5]
  6. Subramanian V, Mazumder A, Surface LE, Butty VL, Fields PA, Alwan A, Torrey L, Thai KK, Levine SS, Bathe M, and Boyer LA. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet. 2013;9(8):e1003725. DOI:10.1371/journal.pgen.1003725 | PubMed ID:23990805 | HubMed [Paper6]
  7. Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Beert E, Catchen JM, Farrington S, Postlethwait JH, Legius E, Hopkins N, and Lees JA. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery. PLoS Genet. 2013 Aug;9(8):e1003734. DOI:10.1371/journal.pgen.1003734 | PubMed ID:24009526 | HubMed [Paper7]
  8. Li CM, Chen G, Dayton TL, Kim-Kiselak C, Hoersch S, Whittaker CA, Bronson RT, Beer DG, Winslow MM, and Jacks T. Differential Tks5 isoform expression contributes to metastatic invasion of lung adenocarcinoma. Genes Dev. 2013 Jul 15;27(14):1557-67. DOI:10.1101/gad.222745.113 | PubMed ID:23873940 | HubMed [Paper8]
  9. Lu K, Cable PH, Abo RP, Ru H, Graffam ME, Schlieper KA, Parry NM, Levine S, Bodnar WM, Wishnok JS, Styblo M, Swenberg JA, Fox JG, and Tannenbaum SR. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation. Chem Res Toxicol. 2013 Dec 16;26(12):1893-903. DOI:10.1021/tx4002868 | PubMed ID:24134150 | HubMed [Paper10]
  10. Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N, McKell R, Rosowski EE, Julien L, Butty V, Dardé ML, Ajzenberg D, Fitzgerald K, Young LH, and Saeij JP. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog. 2013;9(12):e1003779. DOI:10.1371/journal.ppat.1003779 | PubMed ID:24367253 | HubMed [Paper11]
  11. Zhen AW, Nguyen NH, Gibert Y, Motola S, Buckett P, Wessling-Resnick M, Fraenkel E, and Fraenkel PG. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology. 2013 Oct;58(4):1315-25. DOI:10.1002/hep.26490 | PubMed ID:23703590 | HubMed [Paper12]
All Medline abstracts: PubMed | HubMed

2012

  1. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, and Bruneau BG. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012 Sep 28;151(1):206-20. DOI:10.1016/j.cell.2012.07.035 | PubMed ID:22981692 | HubMed [Paper1]
  2. Minot S, Melo MB, Li F, Lu D, Niedelman W, Levine SS, and Saeij JP. Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity. Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13458-63. DOI:10.1073/pnas.1117047109 | PubMed ID:22847430 | HubMed [Paper2]
  3. Kelly L, Huang KH, Ding H, and Chisholm SW. ProPortal: a resource for integrated systems biology of Prochlorococcus and its phage. Nucleic Acids Res. 2012 Jan;40(Database issue):D632-40. DOI:10.1093/nar/gkr1022 | PubMed ID:22102570 | HubMed [Paper3]
All Medline abstracts: PubMed | HubMed

2011

  1. Mellios N, Sugihara H, Castro J, Banerjee A, Le C, Kumar A, Crawford B, Strathmann J, Tropea D, Levine SS, Edbauer D, and Sur M. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci. 2011 Sep 4;14(10):1240-2. DOI:10.1038/nn.2909 | PubMed ID:21892155 | HubMed [Paper1]

2010

  1. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, and Young RA. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010 Sep 23;467(7314):430-5. DOI:10.1038/nature09380 | PubMed ID:20720539 | HubMed [Paper1]
  2. Dejosez M, Levine SS, Frampton GM, Whyte WA, Stratton SA, Barton MC, Gunaratne PH, Young RA, and Zwaka TP. Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 2010 Jul 15;24(14):1479-84. DOI:10.1101/gad.1935210 | PubMed ID:20581084 | HubMed [Paper2]
All Medline abstracts: PubMed | HubMed

2009

  1. Boselli M, Rock J, Unal E, Levine SS, and Amon A. Effects of age on meiosis in budding yeast. Dev Cell. 2009 Jun;16(6):844-55. DOI:10.1016/j.devcel.2009.05.013 | PubMed ID:19531355 | HubMed [Paper1]

PREVIOUS NEWSLETTERS

2012
2011
2010

RECENT CHANGES TO THE WEBSITE

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

15 April 2024

     23:43  User:Yanbin Huang‎‎ 2 changes history +170 [Yanbin Huang‎ (2×)]
     
23:43 (cur | prev) 0 Yanbin Huang talk contribs (→‎Granted Patents)
     
23:43 (cur | prev) +170 Yanbin Huang talk contribs (→‎Granted Patents)
     22:11  The paper that launched microfluidics - Xi Ning‎‎ 14 changes history +9,705 [Xning098‎ (14×)]
     
22:11 (cur | prev) −6 Xning098 talk contribs (→‎Summary)
     
22:07 (cur | prev) −12 Xning098 talk contribs (→‎Synthesis)
     
22:06 (cur | prev) 0 Xning098 talk contribs
     
22:06 (cur | prev) +1 Xning098 talk contribs
     
22:05 (cur | prev) 0 Xning098 talk contribs
     
22:03 (cur | prev) +630 Xning098 talk contribs
     
22:01 (cur | prev) +3,189 Xning098 talk contribs
     
21:44 (cur | prev) +688 Xning098 talk contribs (→‎Separation and quantification)
     
21:33 (cur | prev) +306 Xning098 talk contribs
     
21:29 (cur | prev) −2 Xning098 talk contribs (→‎Electrokinetic effect)
     
21:28 (cur | prev) −1 Xning098 talk contribs (→‎Separation and quantification)
     
21:27 (cur | prev) +398 Xning098 talk contribs (→‎Separation and quantification)
     
21:24 (cur | prev) +2,812 Xning098 talk contribs
     
21:06 (cur | prev) +1,702 Xning098 talk contribs
     21:45  (Upload log) [Xning098‎ (4×)]
     
21:45 Xning098 talk contribs uploaded File:Figure 4 Tdesign.png
     
21:30 Xning098 talk contribs uploaded File:Figure 3 Set-up3.png
     
21:24 Xning098 talk contribs uploaded File:Figure 2 Set-up1.png
     
21:09 Xning098 talk contribs uploaded File:Figure 1 electroosmotic flow.png
N    18:16  Multilayer Paper Microfluidics - Madyson Redder‎‎ 21 changes history +6,228 [Mredder‎ (21×)]
     
18:16 (cur | prev) +540 Mredder talk contribs (→‎Fabrication Methods)
     
18:07 (cur | prev) +822 Mredder talk contribs (→‎Fabrication Methods)
     
17:58 (cur | prev) +1,223 Mredder talk contribs (→‎Fabrication Methods)
     
17:47 (cur | prev) −47 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:46 (cur | prev) +2 Mredder talk contribs (→‎Advantages)
     
17:46 (cur | prev) +1,094 Mredder talk contribs (→‎Advantages)
     
17:37 (cur | prev) +24 Mredder talk contribs (→‎Materials)
     
17:37 (cur | prev) +619 Mredder talk contribs (→‎Materials)
     
17:19 (cur | prev) +18 Mredder talk contribs (→‎Uses)
     
17:19 (cur | prev) +7 Mredder talk contribs (→‎Uses)
     
17:18 (cur | prev) −19 Mredder talk contribs (→‎Developing Countries and Travel)
     
17:18 (cur | prev) +15 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) 0 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) +1,103 Mredder talk contribs (→‎Uses)
     
17:14 (cur | prev) −453 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:13 (cur | prev) +1 Mredder talk contribs (→‎Overview)
     
17:12 (cur | prev) +273 Mredder talk contribs (→‎Overview)
     
17:08 (cur | prev) −699 Mredder talk contribs (→‎Overview)
     
17:06 (cur | prev) +95 Mredder talk contribs
     
17:04 (cur | prev) +12 Mredder talk contribs
N    
17:03 (cur | prev) +1,598 Mredder talk contribs (Created page with "{{Template:CHEM-ENG590E}} Overview 3D polymeric or glass microfluidic devices were created to run tests on small amounts of liquid and receive results in a timely manner. However, these devices are costly and time consuming to produce. A solution to this problem was single-layer paper microfluidic devices. The most common known examples of single-layer paper microfluidic devices are pregnancy tests, COVID-19 antigen tests, and glucose test strips. While these devices a...")
     17:02  CHEM-ENG590E:Wiki Textbook diffhist +54 Mredder talk contribs (→‎Chapter 7 - Fiber-based Microfluidics)
 m   07:22  Paper Microfluidic Device for Archiving Breast Epithelial Cells diffhist +6 Sarah L. Perry talk contribs
     06:39  Hu diffhist +66 Hugangqing talk contribs

14 April 2024