BioMicroCenter:News: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
(70 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{BioMicroCenter}}
{{BioMicroCenter}}


.
== Welcome to the MIT BIOMICRO CENTER ==
{|
|valign=top style="width:60%;padding-right:10px;"|
== BioMicro Center News ==
== BioMicro Center News ==
{|
|rowspan=2 valign=top style="width:60%;padding-right:10px;"|


== JANUARY 9, 2013 ==
Happy new years to everyone. A couple new things happening in BioMicro that we want to make everyone aware of. <BR><BR>
First, this month begins a year long experiment in joining the BioMicro Center Informatics team and the KI Bioinformatics and Computing Core in to a single team. Our two teams have been collaborating for several years, sharing computational infrastructure, etc. but this year we will be formalizing and expanding the relationship with the goal of creating a more efficient unified core. Informatics analysis requests should still be sent to Charlie Whittaker or to myself as usual, but will be spread across the joint team based on expertise and on availability. You are also, as always, welcome to contact any of the informatics scientists directly. We hope this will allow us to reduce waiting times and to keep costs under control.  <BR><BR>
During the trial period (and hopefully going forward), pricing for informatics will be available in two flavors. First, for projects needing routine work, the subsidized rate will be $70/h for all CORE members (Biology, BE, KI, CEHS). For more involved projects, we have second option to purchase a “share” of the informatics team. This is an annual commitment for a fraction of an informaticist and will cost $960/mo for an average of 4h/week of informatics support. The monthly usage levels do not have to be exact and can be used in large blocks. The hours in the share can be used with any member of the team and the informaticist can vary from project to project.  <BR><BR>
Finally, and importantly, we will be changing the way we are storing Illumina sequencing data long term. In the past, we have saved the fastq, sam and bam files, along with the quality control data, in a zipped file. These zipped files now occupy over 50TB of storage which is limiting  how we are able to handle new sequencing runs. To address this, we will be deleting the fastq and sam files from the archive and storing only the binary bam and quality control files. The fastq and sam files can be regenerated rapidly from the bam files using Picard and SamTools (though reads may not be in the same order). As always, we strongly encourage you to keep your own copy of the Illumina data and use our version only as a backup. We will begin this conversion next week.
If you have any concerns, please do not hesitate to contact me.




|valign="top"|
== ABOUT THE BIOMICRO CENTER ==


The MIT BioMicro Center was founded in 2000 as the core bio-fabrication and microarray processing facility at MIT. The Center is a joint endeavor between the [http://biology.mit.edu Department of Biology], the [http://ki.mit.edu Koch Institute for Integrative Cancer Research], the [http://be.mit.edu Department of Biological Engineering] and the [http://cehs.mit.edu MIT Center for Environmental Health Sciences.] The BioMicro Center provides MIT faculty members with integrated facilities for high-throughput data-intensive genomics, bioinformatic analysis, as well as large-scale database storage, management, data mining and data modeling required to fully implement systems approaches to investigate a broad spectrum of biological problems.  The BioMicro Center is designed to maximize the likelihood of successfully designing, implementing, and analyzing systems biology data. With an expert staff available for consultation and collaboration, including several full time bioinformatics scientists and experimentalist with significant experience in systems biology, ample resources exist to assist MIT researchers in any aspect of the research project. This unique cross-disciplinary collaboration leverages resources, spreading institutional commitment, and providing an environment that strongly encourages intellectual rapport between scientists that contributes to the success of projects. This collaborative environment creates a unique opportunity for interactions of biologists and biological engineers who study a broad range of problems.  Investigators are able to adopt novel techniques to address their topics of interest as well as develop new collaborations throughout the institute. <BR><BR>


|valign="top"|
Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs '''must''' acknowledge their core grants for work done in the core with the following language.
* KI ''"This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"''
* [[BioMicroCenter:CEHS13|CEHS]] ''"This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"''


== PUBLICATIONS ==
== PUBLICATIONS ==
[b]2013[/b]<BR><BR>
 
[b]2012[/b]<BR><BR>
Publications from [https://www.ncbi.nlm.nih.gov/sites/myncbi/stuart.levine.1/bibliography/47165401/public/?sortby=pubDate&sdirection=descending Stuart Levine]
<biblio>
#Paper1 pmid=22981692 <!-SL Boyer: Heart->
#Paper2 pmid=22847430 <!-SL Saeij->
#Paper3 pmid=22102570 <!-HD Chisholm->
</biblio>
[b]2011[/b]<BR><BR>
<biblio>
#Paper1 pmid=21892155 <!-SL Sur->
</biblio>
[b]2010[/b]<BR><BR>
<biblio>
#Paper1 pmid=20720539 <!-SL Young->
#Paper1 pmid=20581084 <!-SL Zwaka->
</biblio>
[b]2009[/b]<BR><BR>
<biblio>
#Paper1 pmid=19531355 <!-SL Amon->
</biblio>


== PREVIOUS NEWSLETTERS ==
== PREVIOUS NEWSLETTERS ==
 
'''[[BioMicroCenter:News2017+|2017+]]'''<BR>
'''[[BioMicroCenter:News2016|2016]]'''<BR>
'''[[BioMicroCenter:News2015|2015]]'''<BR>
'''[[BioMicroCenter:News2014|2014]]'''<BR>
'''[[BioMicroCenter:News2013|2013]]'''<BR>
'''[[BioMicroCenter:News2012|2012]]'''<BR>
'''[[BioMicroCenter:News2012|2012]]'''<BR>
'''[[BioMicroCenter:News2011|2011]]'''<BR>
'''[[BioMicroCenter:News2011|2011]]'''<BR>

Latest revision as of 05:26, 28 March 2023

HOME -- SEQUENCING -- LIBRARY PREP -- HIGH-THROUGHPUT -- COMPUTING -- OTHER TECHNOLOGY

.

Welcome to the MIT BIOMICRO CENTER

BioMicro Center News

ABOUT THE BIOMICRO CENTER

The MIT BioMicro Center was founded in 2000 as the core bio-fabrication and microarray processing facility at MIT. The Center is a joint endeavor between the Department of Biology, the Koch Institute for Integrative Cancer Research, the Department of Biological Engineering and the MIT Center for Environmental Health Sciences. The BioMicro Center provides MIT faculty members with integrated facilities for high-throughput data-intensive genomics, bioinformatic analysis, as well as large-scale database storage, management, data mining and data modeling required to fully implement systems approaches to investigate a broad spectrum of biological problems. The BioMicro Center is designed to maximize the likelihood of successfully designing, implementing, and analyzing systems biology data. With an expert staff available for consultation and collaboration, including several full time bioinformatics scientists and experimentalist with significant experience in systems biology, ample resources exist to assist MIT researchers in any aspect of the research project. This unique cross-disciplinary collaboration leverages resources, spreading institutional commitment, and providing an environment that strongly encourages intellectual rapport between scientists that contributes to the success of projects. This collaborative environment creates a unique opportunity for interactions of biologists and biological engineers who study a broad range of problems. Investigators are able to adopt novel techniques to address their topics of interest as well as develop new collaborations throughout the institute.

Experimental and analytical work done in the BioMicro Center is funded by the NIH and must be made available through the NIH's open access policy. All Koch Institute and CEHS labs must acknowledge their core grants for work done in the core with the following language.

  • KI "This work was funded by the National Cancer Institute of the NIH under award P30-CA14051"
  • CEHS "This work was funded by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109"

PUBLICATIONS

Publications from Stuart Levine

PREVIOUS NEWSLETTERS

2017+
2016
2015
2014
2013
2012
2011
2010

RECENT CHANGES TO THE WEBSITE

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

18 April 2024

     12:12  BioMicroCenter:Tecan Freedom Evo‎‎ 7 changes history +1,746 [Noelani Kamelamela‎ (7×)]
     
12:12 (cur | prev) +4 Noelani Kamelamela talk contribs
     
12:12 (cur | prev) +3 Noelani Kamelamela talk contribs
     
10:13 (cur | prev) +7 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) −42 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
10:08 (cur | prev) +86 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:34 (cur | prev) +23 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     
09:32 (cur | prev) +1,665 Noelani Kamelamela talk contribs
     11:42  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist −3 Sarah L. Perry talk contribs
     09:35  BioMicroCenter‎‎ 2 changes history +92 [Noelani Kamelamela‎ (2×)]
     
09:35 (cur | prev) +60 Noelani Kamelamela talk contribs
     
09:20 (cur | prev) +32 Noelani Kamelamela talk contribs
     09:32 Upload log Noelani Kamelamela talk contribs uploaded File:Chemagic360.jpg(from manual)

17 April 2024

     15:34  BioMicroCenter:Element Sequencing‎‎ 3 changes history +295 [Challee‎ (3×)]
     
15:34 (cur | prev) +195 Challee talk contribs
     
14:22 (cur | prev) +100 Challee talk contribs
     
14:07 (cur | prev) 0 Challee talk contribs
     13:10  BioMicroCenter:SingleCell diffhist +30 Noelani Kamelamela talk contribs (→‎10X CHROMIUM X)
     12:43  BioMicroCenter diffhist −15 Noelani Kamelamela talk contribs

16 April 2024

N    19:59  Nanoimprint Lithography (NIL) - Carter Paul‎‎ 10 changes history +7,205 [CarterPaul‎ (10×)]
     
19:59 (cur | prev) +769 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:53 (cur | prev) 0 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:52 (cur | prev) +1 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:50 (cur | prev) +202 CarterPaul talk contribs (→‎Thermal NIL Process)
     
19:17 (cur | prev) −20 CarterPaul talk contribs (→‎References)
     
19:17 (cur | prev) −1 CarterPaul talk contribs
     
19:11 (cur | prev) +4,278 CarterPaul talk contribs
     
18:53 (cur | prev) +1,891 CarterPaul talk contribs
N    
18:42 (cur | prev) +85 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} =Motivation= =Introduction to NIL= =Thermal NIL Process=")
     19:40 Upload log CarterPaul talk contribs uploaded File:NIL1.png
N    18:40  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, Adam Lyons and Jacob Belden diffhist +24,060 CarterPaul talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== While most microfluidic devices incorporate a 2D cell culture design, in which a single layer of cells is grown on the bottom of a device, these systems suffer from poor <i>in vivo</i> mimicry, as, in the human body, most cells grow in all directions.<sup>https://doi.org/10.5114/aoms.2016.63743 1</sup> To address this limitation, 3D cell culture devices have been developed - in w...")
     18:38  CHEM-ENG590E:Wiki Textbook‎‎ 2 changes history +63 [CarterPaul‎ (2×)]
     
18:38 (cur | prev) +50 CarterPaul talk contribs (→‎Chapter 1 - Microfabrication)
     
18:37 (cur | prev) +13 CarterPaul talk contribs
     18:36  3D Cell Culture - McLean Taggart, Emma Villares, Maximillian Marek, Scott LeBlanc, and Adam Lyons diffhist +5,343 CarterPaul talk contribs (Added a Technique and applications section)
     10:20  Yarn Microfluidics - Roger Dirth‎‎ 12 changes history +442 [Rcostello‎ (12×)]
     
10:20 (cur | prev) +41 Rcostello talk contribs (→‎Applications)
     
10:19 (cur | prev) +36 Rcostello talk contribs (→‎Applications)
     
10:18 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Fabrication)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Washburn Equation)
     
10:16 (cur | prev) +38 Rcostello talk contribs (→‎Wicking Rate)
     
10:16 (cur | prev) +37 Rcostello talk contribs (→‎Introduction)
     
10:15 (cur | prev) +36 Rcostello talk contribs (→‎Wicking Rate)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Fabrication)
     
10:14 (cur | prev) +34 Rcostello talk contribs (→‎Applications)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:13 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     08:18  3D Printed Microfluidic Robots - Helen Hua‎‎ 2 changes history +6 [Michele Caggioni‎ (2×)]
     
08:18 (cur | prev) +22 Michele Caggioni talk contribs (→‎Actuation)
     
08:18 (cur | prev) −16 Michele Caggioni talk contribs (→‎Actuation)
     08:11  3D Printing Overview diffhist +422 Michele Caggioni talk contribs

15 April 2024

     23:43  User:Yanbin Huang‎‎ 2 changes history +170 [Yanbin Huang‎ (2×)]
     
23:43 (cur | prev) 0 Yanbin Huang talk contribs (→‎Granted Patents)
     
23:43 (cur | prev) +170 Yanbin Huang talk contribs (→‎Granted Patents)
     22:11  The paper that launched microfluidics - Xi Ning‎‎ 2 changes history −18 [Xning098‎ (2×)]
     
22:11 (cur | prev) −6 Xning098 talk contribs (→‎Summary)
     
22:07 (cur | prev) −12 Xning098 talk contribs (→‎Synthesis)