BioSysBio:abstracts/2007/Alper Kucukural: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 21: Line 21:


==References==
==References==
1. Taylor T., Vaisman I.I. (2006) Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures. . Phys Rev E Stat Nonlin Soft Matter Phys.: 73: 041925.  
1. Taylor T., Vaisman I.I. (2006) Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures. . Phys Rev E Stat Nonlin Soft Matter Phys.: 73: 041925. <br>
2. Miyazawa, S. & Jernigan, R. L. (1996) J. Mol. Biol. 256, 623–644.
2. Miyazawa, S. & Jernigan, R. L. (1996) J. Mol. Biol. 256, 623–644.<br>
3. McConkey, B.J., Sobolev, V., and Eldman, M. 2003. Discrimination of native protein structures using atom–atom contact scoring. Proc. Natl. Acad. Sci. 100: 3215–3220  
3. McConkey, B.J., Sobolev, V., and Eldman, M. 2003. Discrimination of native protein structures using atom–atom contact scoring. Proc. Natl. Acad. Sci. 100: 3215–3220. <br>
4. Uğur Sezerman, Finding Common Domains of Proteins Using Parallelized Attributed Inexact Sub-graph Matching Algorithm, TAM 2006
4. Uğur Sezerman, Finding Common Domains of Proteins Using Parallelized Attributed Inexact Sub-graph Matching Algorithm, TAM 2006.<br>
5. M. Vendruscolo et al., Phys. Rev. E 65, 061910 2002.
5. M. Vendruscolo et al., Phys. Rev. E 65, 061910 2002.<br>
6. Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature 393, 440--442
6. Watts, D. J. and Strogatz, S. H. (1998). Collective Dynamics of 'Small-World' Networks. Nature 393, 440--442.<br>
7. Erdös, P. and A. Renyi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960. 5: p. 17-61
7. Erdös, P. and A. Renyi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960. 5: p. 17-61.<br>
8. Liang, J.and K.A. Dill, Are proteins Well-Packed? Biophys, J.,2001. 81:p. 751-766.
8. Liang, J.and K.A. Dill, Are proteins Well-Packed? Biophys, J.,2001. 81:p. 751-766.<br>
9. Soyer, A., J. Chomiller, J.-P. Mornon, R. Jullien, and J.-F. Sadoc, Voronoi Tesselation Reveals the Condensed Matter Character of Folded  Proteins. Phys. Rev. Lett., 2000. 85:p.3532-3535
9. Soyer, A., J. Chomiller, J.-P. Mornon, R. Jullien, and J.-F. Sadoc, Voronoi Tesselation Reveals the Condensed Matter Character of Folded  Proteins. Phys. Rev. Lett., 2000. 85:p.3532-3535.<br>
10.Vendruscolo, M., E. Kussel, and E. Domany, Recovery of Protein Structure from Contact Maps. Structure Fold. Des., 1997. 2:p.295-306
10.Vendruscolo, M., E. Kussel, and E. Domany, Recovery of Protein Structure from Contact Maps. Structure Fold. Des., 1997. 2:p.295-306.<br>
11.Fariselli, P. and R. Casadio, A Neural Network Based predictor of Residue Contacts in Proteins. Protein Eng., 1996. 9:p.941-948
11.Fariselli, P. and R. Casadio, A Neural Network Based predictor of Residue Contacts in Proteins. Protein Eng., 1996. 9:p.941-948.<br>
12.Bishop, C.M., Neural Networks in Pattern Recognition. 1996, New York:Oxford University Press
12.Bishop, C.M., Neural Networks in Pattern Recognition. 1996, New York:Oxford University Press.<br>
13.Strogatz S.H.,Exploring Complex Networks, 2001.410:p.268-276.
13.Strogatz S.H.,Exploring Complex Networks, 2001.410:p.268-276.<br>
14.Petersen, T.N., C. Lundegaard, M. Nielsen, H. Bohr, S. Brunak, G.P. Gippert, and O. Lund, Prediction of Protein Secondary Structure at 80% Accuracy. Proteins,2000.41:p.17-20.
14.Petersen, T.N., C. Lundegaard, M. Nielsen, H. Bohr, S. Brunak, G.P. Gippert, and O. Lund, Prediction of Protein Secondary Structure at 80% Accuracy. Proteins,2000.41:p.17-20.<br>
15.  
15.Albert, R. and Barabasi, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47–97 (2002).<br>
 


__NOTOC__
__NOTOC__

Revision as of 01:34, 15 September 2006

  • Add or delete the sections that you require.

Add your title here

Author(s): Alper Küçükural, Uğur Sezerman
Affiliations: Sabancı University
Contact:email: kucukural@su.sabanciuniv.edu
Keywords: 'Graph Theory' 'Bioinformatics' 'Delaunay Tesselation' 'Contact Maps'

Abstract

Graph theoretic properties of proteins can be used to perceive the differences between correctly folded proteins and well designed decoy sets. Graphs are used to representation of 3D protein structures. We used two different graph representations of protein structures which are Delaunay tessellations of proteins and contact map graphs. Graph theoretic properties for both graph types showed high classification accuracy to discrimination of proteins. Fisher, linear, quadratic, neural network and support vector classifiers were used to classification of the protein structures. The best classifier accuracy was over %97.5. The results showed that characteristic features of graph theoretic properties can be used many fields such as prediction of fold recognition, structure alignment and comparison, detection of similar domains, and definition of structural motifs in high accuracy.

Results


References

1. Taylor T., Vaisman I.I. (2006) Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures. . Phys Rev E Stat Nonlin Soft Matter Phys.: 73: 041925.
2. Miyazawa, S. & Jernigan, R. L. (1996) J. Mol. Biol. 256, 623–644.
3. McConkey, B.J., Sobolev, V., and Eldman, M. 2003. Discrimination of native protein structures using atom–atom contact scoring. Proc. Natl. Acad. Sci. 100: 3215–3220.
4. Uğur Sezerman, Finding Common Domains of Proteins Using Parallelized Attributed Inexact Sub-graph Matching Algorithm, TAM 2006.
5. M. Vendruscolo et al., Phys. Rev. E 65, 061910 2002.
6. Watts, D. J. and Strogatz, S. H. (1998). Collective Dynamics of 'Small-World' Networks. Nature 393, 440--442.
7. Erdös, P. and A. Renyi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960. 5: p. 17-61.
8. Liang, J.and K.A. Dill, Are proteins Well-Packed? Biophys, J.,2001. 81:p. 751-766.
9. Soyer, A., J. Chomiller, J.-P. Mornon, R. Jullien, and J.-F. Sadoc, Voronoi Tesselation Reveals the Condensed Matter Character of Folded Proteins. Phys. Rev. Lett., 2000. 85:p.3532-3535.
10.Vendruscolo, M., E. Kussel, and E. Domany, Recovery of Protein Structure from Contact Maps. Structure Fold. Des., 1997. 2:p.295-306.
11.Fariselli, P. and R. Casadio, A Neural Network Based predictor of Residue Contacts in Proteins. Protein Eng., 1996. 9:p.941-948.
12.Bishop, C.M., Neural Networks in Pattern Recognition. 1996, New York:Oxford University Press.
13.Strogatz S.H.,Exploring Complex Networks, 2001.410:p.268-276.
14.Petersen, T.N., C. Lundegaard, M. Nielsen, H. Bohr, S. Brunak, G.P. Gippert, and O. Lund, Prediction of Protein Secondary Structure at 80% Accuracy. Proteins,2000.41:p.17-20.
15.Albert, R. and Barabasi, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47–97 (2002).