Biomod/2012/Harvard/BioDesign/References: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Template:Biomod/2012/Harvard/BioDesign}}
{{Template:Biomod/2012/Harvard/BioDesign}}


A list of great literature<br><br><br>


Some papers here<br><br><br><br><br>
<font size="5">References</font>


Useful websites<br><br><br>
 
Afonin, K. a, Bindewald, E., Yaghoubian, A. J., Voss, N., Jacovetty, E., Shapiro, B. a, & Jaeger, L. (2010). In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology, 5(9), 676–82. doi:10.1038/nnano.2010.160
 
 
Delebecque, C. J., Lindner, A. B., Silver, P. a, & Aldaye, F. a. (2011). Organization of intracellular reactions with rationally designed RNA assemblies. Science (New York, N.Y.), 333(6041), 470–4. doi:10.1126/science.1206938
 
 
Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.), 325(5941), 725–30. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737683&tool=pmcentrez&rendertype=abstract
 
 
Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
 
 
Douglas, S. M., Bachelet, I., & Church, G. M. (2012b). A logic-gated nanorobot for targeted transport of molecular payloads. (SUPPLEMENTAL). Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
 
 
Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414–8. Retrieved from http://dx.doi.org/10.1038/nature08016
 
 
Hauser, N. C., Martinez, R., Jacob, A., Rupp, S., Hoheisel, J. D., & Matysiak, S. (2006). Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic acids research, 34(18), 5101–11. doi:10.1093/nar/gkl671
 
 
Kim, D.-N., Kilchherr, F., Dietz, H., & Bathe, M. (2011). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids research, 1–7. doi:10.1093/nar/gkr1173
 
 
Kim, Y., Yang, C. J., & Tan, W. (2007). Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic acids research, 35(21), 7279–87. doi:10.1093/nar/gkm771
 
 
Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., et al. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature
Nanotechnology, (June), 6–10. doi:10.1038/nnano.2012.73
 
 
Liedl, T., Högberg, B., Tytell, J., Ingber, D. E., & Shih, W. M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology, 5(7), 520–4. doi:10.1038/nnano.2010.107
 
 
Lin, C., Rinker, S., Wang, X., Liu, Y., Seeman, N. C., & Yan, H. (2008). In vivo cloning of artificial DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17626–31. doi:10.1073/pnas.0805416105
 
 
Mei, Q., Wei, X., Su, F., Liu, Y., Youngbull, C., Johnson, R., Lindsay, S., et al. (2011). Stability of DNA origami nanoarrays in cell lysate. Nano letters, 11(4), 1477–82. doi:10.1021/nl1040836
 
 
Nolte, A., Bald, R., & Erdmann, V. (1996). Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nature. Retrieved from http://www.nature.com/nbt/journal/v14/n9/abs/nbt0996-1116.html
 
 
Noy, A., & Golestanian, R. (2010). the Influence of Ionic Strength, 8022–8031.
 
 
Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology, 6(12), 763–72. doi:10.1038/nnano.2011.187
 
 
Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., & Sugiyama, H. (2011). Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. Journal of the American Chemical Society, 133(37), 14488–91. doi:10.1021/ja204546h
 
 
Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082), 297–302. Retrieved from http://dx.doi.org/10.1038/nature04586
 
 
Shih, W. M., Quispe, J. D., & Joyce, G. F. (2004). A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427(6975), 618–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14961116
 
 
Wei, B., Dai, M., & Yin, P. (2012a). Complex shapes self-assembled from single-stranded DNA tiles. Nature, 485(7400), 623–626. Retrieved from http://dx.doi.org/10.1038/nature11075
 
 
Wei, B., Dai, M., & Yin, P. (2012b). Complex shapes self-assembled from single-stranded DNA tiles (SUPPLEMENTAL). Nature, 485(7400), 623–626. doi:10.1038/nature11075
 
 
Wlotzka, B., Leva, S., Eschgfäller, B., Burmeister, J., Kleinjung, F., Kaduk, C., Muhn, P., et al. (2002). In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8898–902. doi:10.1073/pnas.132067399
 
 
Yin, P., Hariadi, R. F., Sahu, S., Choi, H. M. T., Park, S. H., Labean, T. H., & Reif, J. H. (2008a). Programming DNA tube circumferences. Science (New York, N.Y.), 321(5890), 824–6. Retrieved from http://www.sciencemag.org/content/321/5890/824.abstract
 
 
Yin, P., Hariadi, R. F., Sahu, S., Choi, H. M. T., Park, S. H., Labean, T. H., & Reif, J. H. (2008b). Programming DNA tube circumferences. (SUPPLEMENTAL). Science (New York, N.Y.), 321(5890), 824–6. doi:10.1126/science.1157312

Latest revision as of 22:12, 26 October 2012

<html>

<head>

<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>

</head>



<style>

/*BUT ACTUALLY*/ body {

 font-family: 'Open Sans', sans-serif;
 overflow-y: scroll;

}

.container {

 background-color: #ffffff;
 margin-top:0px

} .OWWNBcpCurrentDateFilled { display: none; }

h5 {

 font-family: 'Open Sans', sans-serif;
 font-size: 11px;
 font-style: normal;
 text-align: center;
 margin:0px;
 padding:0px;

}

  1. column-content

{

 width: 0px; 
 float: left; 
 margin: 0 0 0 0;
 padding: 0;

} .firstHeading {

 display:none;
 width:0px;

}

  1. column-one

{

 display:none; 
 width:0px;
 background-color: #ffffff;

}

  1. globalWrapper

{

 width: 900px;
 background-color: #ffffff;
 margin-left: auto;
 margin-right: auto

}

  1. content

{

 margin: 0 0 0 0;
 align: center;
 padding: 12px 12px 12px 12px;
 width: 876px;
 background-color: #ffffff; border: 0;

}

  1. bodyContent

{

 width: 850px;
 align: center;
 background-color: #fffffff;

}

  1. column-content

{

 width: 900px;
 background-color: #ffffff;

}

  1. footer

{

 position: center;
 width: 900px;

} @media screen {

   body { background: #000000 0 0 no-repeat;  /* changed default background */ }

}

  1. menu

{

 position: fixed;
 float: left;
 width: 180px;
 padding: 10px;
 background-color: #FFFFFF;

}

  1. pagecontent

{

 float: right;
 width: 620px;
 margin-left: 300px;
 min-height: 400px

}

  1. toc { display: none; }

/*Expanding list*/ ul { list-style: none; }

  1. exp li ul { display: none; }
  2. exp li:hover ul { display: block; }
  3. exp li a:active ul { display: block; }

a:link {color:#FF6060;} a:visited {color:#FF6060;} /* visited link */ a:hover {color:#B24343;} /* mouse over link */ a:active {color:#B24343; } /* selected link */

</style> </html>


References


Afonin, K. a, Bindewald, E., Yaghoubian, A. J., Voss, N., Jacovetty, E., Shapiro, B. a, & Jaeger, L. (2010). In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology, 5(9), 676–82. doi:10.1038/nnano.2010.160


Delebecque, C. J., Lindner, A. B., Silver, P. a, & Aldaye, F. a. (2011). Organization of intracellular reactions with rationally designed RNA assemblies. Science (New York, N.Y.), 333(6041), 470–4. doi:10.1126/science.1206938


Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.), 325(5941), 725–30. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737683&tool=pmcentrez&rendertype=abstract


Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081


Douglas, S. M., Bachelet, I., & Church, G. M. (2012b). A logic-gated nanorobot for targeted transport of molecular payloads. (SUPPLEMENTAL). Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081


Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414–8. Retrieved from http://dx.doi.org/10.1038/nature08016


Hauser, N. C., Martinez, R., Jacob, A., Rupp, S., Hoheisel, J. D., & Matysiak, S. (2006). Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic acids research, 34(18), 5101–11. doi:10.1093/nar/gkl671


Kim, D.-N., Kilchherr, F., Dietz, H., & Bathe, M. (2011). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids research, 1–7. doi:10.1093/nar/gkr1173


Kim, Y., Yang, C. J., & Tan, W. (2007). Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic acids research, 35(21), 7279–87. doi:10.1093/nar/gkm771


Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., et al. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, (June), 6–10. doi:10.1038/nnano.2012.73


Liedl, T., Högberg, B., Tytell, J., Ingber, D. E., & Shih, W. M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology, 5(7), 520–4. doi:10.1038/nnano.2010.107


Lin, C., Rinker, S., Wang, X., Liu, Y., Seeman, N. C., & Yan, H. (2008). In vivo cloning of artificial DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17626–31. doi:10.1073/pnas.0805416105


Mei, Q., Wei, X., Su, F., Liu, Y., Youngbull, C., Johnson, R., Lindsay, S., et al. (2011). Stability of DNA origami nanoarrays in cell lysate. Nano letters, 11(4), 1477–82. doi:10.1021/nl1040836


Nolte, A., Bald, R., & Erdmann, V. (1996). Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nature. Retrieved from http://www.nature.com/nbt/journal/v14/n9/abs/nbt0996-1116.html


Noy, A., & Golestanian, R. (2010). the Influence of Ionic Strength, 8022–8031.


Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology, 6(12), 763–72. doi:10.1038/nnano.2011.187


Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., & Sugiyama, H. (2011). Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. Journal of the American Chemical Society, 133(37), 14488–91. doi:10.1021/ja204546h


Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082), 297–302. Retrieved from http://dx.doi.org/10.1038/nature04586


Shih, W. M., Quispe, J. D., & Joyce, G. F. (2004). A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427(6975), 618–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14961116


Wei, B., Dai, M., & Yin, P. (2012a). Complex shapes self-assembled from single-stranded DNA tiles. Nature, 485(7400), 623–626. Retrieved from http://dx.doi.org/10.1038/nature11075


Wei, B., Dai, M., & Yin, P. (2012b). Complex shapes self-assembled from single-stranded DNA tiles (SUPPLEMENTAL). Nature, 485(7400), 623–626. doi:10.1038/nature11075


Wlotzka, B., Leva, S., Eschgfäller, B., Burmeister, J., Kleinjung, F., Kaduk, C., Muhn, P., et al. (2002). In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8898–902. doi:10.1073/pnas.132067399


Yin, P., Hariadi, R. F., Sahu, S., Choi, H. M. T., Park, S. H., Labean, T. H., & Reif, J. H. (2008a). Programming DNA tube circumferences. Science (New York, N.Y.), 321(5890), 824–6. Retrieved from http://www.sciencemag.org/content/321/5890/824.abstract


Yin, P., Hariadi, R. F., Sahu, S., Choi, H. M. T., Park, S. H., Labean, T. H., & Reif, J. H. (2008b). Programming DNA tube circumferences. (SUPPLEMENTAL). Science (New York, N.Y.), 321(5890), 824–6. doi:10.1126/science.1157312