Biomod/2012/Harvard/BioDesign/References: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 2: Line 2:


Afonin, K. a, Bindewald, E., Yaghoubian, A. J., Voss, N., Jacovetty, E., Shapiro, B. a, & Jaeger, L. (2010). In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology, 5(9), 676–82. doi:10.1038/nnano.2010.160
Afonin, K. a, Bindewald, E., Yaghoubian, A. J., Voss, N., Jacovetty, E., Shapiro, B. a, & Jaeger, L. (2010). In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology, 5(9), 676–82. doi:10.1038/nnano.2010.160


Delebecque, C. J., Lindner, A. B., Silver, P. a, & Aldaye, F. a. (2011). Organization of intracellular reactions with rationally designed RNA assemblies. Science (New York, N.Y.), 333(6041), 470–4. doi:10.1126/science.1206938
Delebecque, C. J., Lindner, A. B., Silver, P. a, & Aldaye, F. a. (2011). Organization of intracellular reactions with rationally designed RNA assemblies. Science (New York, N.Y.), 333(6041), 470–4. doi:10.1126/science.1206938


Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.), 325(5941), 725–30. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737683&tool=pmcentrez&rendertype=abstract
Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.), 325(5941), 725–30. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737683&tool=pmcentrez&rendertype=abstract


Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081


Douglas, S. M., Bachelet, I., & Church, G. M. (2012b). A logic-gated nanorobot for targeted transport of molecular payloads. (SUPPLEMENTAL). Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081
Douglas, S. M., Bachelet, I., & Church, G. M. (2012b). A logic-gated nanorobot for targeted transport of molecular payloads. (SUPPLEMENTAL). Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081


Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414–8. Retrieved from http://dx.doi.org/10.1038/nature08016
Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414–8. Retrieved from http://dx.doi.org/10.1038/nature08016


Hauser, N. C., Martinez, R., Jacob, A., Rupp, S., Hoheisel, J. D., & Matysiak, S. (2006). Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic acids research, 34(18), 5101–11. doi:10.1093/nar/gkl671
Hauser, N. C., Martinez, R., Jacob, A., Rupp, S., Hoheisel, J. D., & Matysiak, S. (2006). Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic acids research, 34(18), 5101–11. doi:10.1093/nar/gkl671


Kim, D.-N., Kilchherr, F., Dietz, H., & Bathe, M. (2011). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids research, 1–7. doi:10.1093/nar/gkr1173
Kim, D.-N., Kilchherr, F., Dietz, H., & Bathe, M. (2011). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids research, 1–7. doi:10.1093/nar/gkr1173


Kim, Y., Yang, C. J., & Tan, W. (2007). Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic acids research, 35(21), 7279–87. doi:10.1093/nar/gkm771
Kim, Y., Yang, C. J., & Tan, W. (2007). Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic acids research, 35(21), 7279–87. doi:10.1093/nar/gkm771


Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., et al. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature  
Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., et al. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature  
Nanotechnology, (June), 6–10. doi:10.1038/nnano.2012.73
Nanotechnology, (June), 6–10. doi:10.1038/nnano.2012.73


Liedl, T., Högberg, B., Tytell, J., Ingber, D. E., & Shih, W. M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology, 5(7), 520–4. doi:10.1038/nnano.2010.107
Liedl, T., Högberg, B., Tytell, J., Ingber, D. E., & Shih, W. M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology, 5(7), 520–4. doi:10.1038/nnano.2010.107

Revision as of 22:01, 26 October 2012

<html>

<head>

<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>

</head>



<style>

/*BUT ACTUALLY*/ body {

 font-family: 'Open Sans', sans-serif;
 overflow-y: scroll;

}

.container {

 background-color: #ffffff;
 margin-top:0px

} .OWWNBcpCurrentDateFilled { display: none; }

h5 {

 font-family: 'Open Sans', sans-serif;
 font-size: 11px;
 font-style: normal;
 text-align: center;
 margin:0px;
 padding:0px;

}

  1. column-content

{

 width: 0px; 
 float: left; 
 margin: 0 0 0 0;
 padding: 0;

} .firstHeading {

 display:none;
 width:0px;

}

  1. column-one

{

 display:none; 
 width:0px;
 background-color: #ffffff;

}

  1. globalWrapper

{

 width: 900px;
 background-color: #ffffff;
 margin-left: auto;
 margin-right: auto

}

  1. content

{

 margin: 0 0 0 0;
 align: center;
 padding: 12px 12px 12px 12px;
 width: 876px;
 background-color: #ffffff; border: 0;

}

  1. bodyContent

{

 width: 850px;
 align: center;
 background-color: #fffffff;

}

  1. column-content

{

 width: 900px;
 background-color: #ffffff;

}

  1. footer

{

 position: center;
 width: 900px;

} @media screen {

   body { background: #000000 0 0 no-repeat;  /* changed default background */ }

}

  1. menu

{

 position: fixed;
 float: left;
 width: 180px;
 padding: 10px;
 background-color: #FFFFFF;

}

  1. pagecontent

{

 float: right;
 width: 620px;
 margin-left: 300px;
 min-height: 400px

}

  1. toc { display: none; }

/*Expanding list*/ ul { list-style: none; }

  1. exp li ul { display: none; }
  2. exp li:hover ul { display: block; }
  3. exp li a:active ul { display: block; }

a:link {color:#FF6060;} a:visited {color:#FF6060;} /* visited link */ a:hover {color:#B24343;} /* mouse over link */ a:active {color:#B24343; } /* selected link */

</style> </html>

Afonin, K. a, Bindewald, E., Yaghoubian, A. J., Voss, N., Jacovetty, E., Shapiro, B. a, & Jaeger, L. (2010). In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology, 5(9), 676–82. doi:10.1038/nnano.2010.160


Delebecque, C. J., Lindner, A. B., Silver, P. a, & Aldaye, F. a. (2011). Organization of intracellular reactions with rationally designed RNA assemblies. Science (New York, N.Y.), 333(6041), 470–4. doi:10.1126/science.1206938


Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science (New York, N.Y.), 325(5941), 725–30. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737683&tool=pmcentrez&rendertype=abstract


Douglas, S. M., Bachelet, I., & Church, G. M. (2012a). A logic-gated nanorobot for targeted transport of molecular payloads. Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081


Douglas, S. M., Bachelet, I., & Church, G. M. (2012b). A logic-gated nanorobot for targeted transport of molecular payloads. (SUPPLEMENTAL). Science (New York, N.Y.), 335(6070), 831–4. doi:10.1126/science.1214081


Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414–8. Retrieved from http://dx.doi.org/10.1038/nature08016


Hauser, N. C., Martinez, R., Jacob, A., Rupp, S., Hoheisel, J. D., & Matysiak, S. (2006). Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic acids research, 34(18), 5101–11. doi:10.1093/nar/gkl671


Kim, D.-N., Kilchherr, F., Dietz, H., & Bathe, M. (2011). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids research, 1–7. doi:10.1093/nar/gkr1173


Kim, Y., Yang, C. J., & Tan, W. (2007). Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic acids research, 35(21), 7279–87. doi:10.1093/nar/gkm771


Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., et al. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, (June), 6–10. doi:10.1038/nnano.2012.73


Liedl, T., Högberg, B., Tytell, J., Ingber, D. E., & Shih, W. M. (2010). Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology, 5(7), 520–4. doi:10.1038/nnano.2010.107

Lin, C., Rinker, S., Wang, X., Liu, Y., Seeman, N. C., & Yan, H. (2008). In vivo cloning of artificial DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17626–31. doi:10.1073/pnas.0805416105

Mei, Q., Wei, X., Su, F., Liu, Y., Youngbull, C., Johnson, R., Lindsay, S., et al. (2011). Stability of DNA origami nanoarrays in cell lysate. Nano letters, 11(4), 1477–82. doi:10.1021/nl1040836

Nolte, A., Bald, R., & Erdmann, V. (1996). Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nature. Retrieved from http://www.nature.com/nbt/journal/v14/n9/abs/nbt0996-1116.html

Noy, A., & Golestanian, R. (2010). the Influence of Ionic Strength, 8022–8031.

Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology, 6(12), 763–72. doi:10.1038/nnano.2011.187

Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., & Sugiyama, H. (2011). Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly.

Journal of the American Chemical Society, 133(37), 14488–91. doi:10.1021/ja204546h

Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082), 297–302. Retrieved from http://dx.doi.org/10.1038/nature04586

Shih, W. M., Quispe, J. D., & Joyce, G. F. (2004). A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427(6975), 618–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14961116

Wei, B., Dai, M., & Yin, P. (2012a). Complex shapes self-assembled from single-stranded DNA tiles. Nature, 485(7400), 623–626. Retrieved from http://dx.doi.org/10.1038/nature11075

Wei, B., Dai, M., & Yin, P. (2012b). Complex shapes self-assembled from single-stranded DNA tiles (SUPPLEMENTAL). Nature, 485(7400), 623–626. doi:10.1038/nature11075

Wlotzka, B., Leva, S., Eschgfäller, B., Burmeister, J., Kleinjung, F., Kaduk, C., Muhn, P., et al. (2002). In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8898–902. doi:10.1073/pnas.132067399

Yin, P., Hariadi, R. F., Sahu, S., Choi, H. M. T., Park, S. H., Labean, T. H., & Reif, J. H. (2008a). Programming DNA tube circumferences. Science (New York, N.Y.), 321(5890), 824–6. Retrieved from http://www.sciencemag.org/content/321/5890/824.abstract

Yin, P., Hariadi, R. F., Sahu, S., Choi, H. M. T., Park, S. H., Labean, T. H., & Reif, J. H. (2008b). Programming DNA tube circumferences. (SUPPLEMENTAL). Science (New York, N.Y.), 321(5890), 824–6. doi:10.1126/science.1157312