Biomod/2013/StJohns/introduction: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 7: Line 7:
Since binding-specifc conformational change can be transduced into a signal, this should enable the design of nanometre-scale sensors for viruses.
Since binding-specifc conformational change can be transduced into a signal, this should enable the design of nanometre-scale sensors for viruses.


In our proof-of-principle approach, the origami structure is a three-pronged  DO ‘claw’<sup>[[Biomod/2013/StJohns/References|[2]]]</sup> with sticky-ended DNA strands complementary to the surface of a modified<sup>[[Biomod/2013/StJohns/References|[3]]]</sup> bacteriophage MS2 capsid substrate.  
In our [[Biomod/2013/StJohns/Approaches#claw|proof-of-principle approach]], the origami structure is a three-pronged  DO ‘claw’<sup>[[Biomod/2013/StJohns/References|[2]]]</sup> with sticky-ended DNA strands complementary to the surface of a modified<sup>[[Biomod/2013/StJohns/References|[3]]]</sup> bacteriophage MS2 capsid substrate.  


In parallel, we will investigate several other aspects of the design:
In parallel, we will investigate several other aspects of the design:
* We will make ‘libraries’ of claws that have different geometries of virus-binding sites and select the most avid claw(s) for further study and optimization.
* [[Biomod/2013/StJohns/Approaches#selection|We will make ‘libraries’ of claws that have different geometries of virus-binding sites and select the most avid claw(s) for further study and optimization.]]
* We will investigate immunoglobulins as potential binding elements for use in future claw designs.
* [[Biomod/2013/StJohns/Approaches#antibodies|We will investigate immunoglobulins as potential binding elements for use in future claw designs.]]
* We will investigate methods of controlling the vertex angles of DO structures using computer-aided design.
* [[Biomod/2013/StJohns/Approaches#triangles|We will investigate methods of controlling the vertex angles of DO structures using computer-aided design.]]





Revision as of 11:21, 24 October 2013

<html>

<head>

<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>

</head>



<style>

body {

 font-family: 'Trebuchet MS', 'Open Sans', sans-serif;
 overflow-y: auto;

}

.container {

 background-color: #ffffff;
 margin-top:0px

} .OWWNBcpCurrentDateFilled { display: none; }

h5 {

 font-family: 'Trebuchet MS', 'Open Sans', sans-serif;
 font-size: 11px;
 font-style: normal;
 text-align: center;
 margin:0px;
 padding:0px;

}

  1. column-content

{

 width: 0px; 
 float: left; 
 margin: 0 0 0 0;
 padding: 0;

} .firstHeading {

 display:none;
 width:0px;

}

  1. column-one

{

 display:none; 
 width:0px;
 background-color: #ffffff;

}

  1. globalWrapper

{

 width: 1024px;
 background-color: #ffffff;
 margin-left: auto;
 margin-right: auto

}

  1. content

{

 margin: 0 0 0 0;
 align: center;
 padding: 12px 12px 12px 12px;
 width: 1000px;
 background-color: #ffffff; border: 0;

}

  1. bodyContent

{

 width: 974px;
 align: justify;
 background-color: #fffffff;

}

  1. column-content

{

 width: 1024px;
 background-color: #ffffff;

}

  1. footer

{

 position: absolute;
 bottom: 0;
 width: 1024px;

}

  1. menu

{

 position: fixed;
 float: left;
 width: 180px;
 padding: 10px;
 background-color: #FFFFFF;

}

  1. resolutionwarning

{

 display: none;
 text-align: center;

}

  1. pagecontent

{

 text-align: justify;
 float: right;
 width: 744px;
 margin-left: 300px;
 min-height: 400px

}

  1. toc { display: none; }

@media all {

   body { background: #ffffff 0 0 no-repeat;}

}

/*Expanding list*/ ul { list-style: none; }

  1. exp li ul { display: none; }
  2. exp li:hover ul { display: block; }
  3. exp li a:active ul { display: block; }

a:link {color:#007788;} /*unvisited link*/ a:visited {color:#007788;} /* visited link */ a:hover {color:#00ccff;} /* mouse over link */ a:active {color:#00ccff;} /* selected link */

</style> </html>

For optimal viewing experience, please enlarge this window to at least 1024 pixels.

Abstract

The goal of this project is to design and characterize a DNA origami[1] (DO) structure that undergoes significant conformational changes when bound to objects ranging in size from 10-100 nm.

Since binding-specifc conformational change can be transduced into a signal, this should enable the design of nanometre-scale sensors for viruses.

In our proof-of-principle approach, the origami structure is a three-pronged DO ‘claw’[2] with sticky-ended DNA strands complementary to the surface of a modified[3] bacteriophage MS2 capsid substrate.

In parallel, we will investigate several other aspects of the design:


To characterize the conformational changes and binding interactions of this system, we will use four primary methods:

Youtube video

<html><center><iframe class="youtube-player" style="text-align:center" type="text/html" width="420" height="315" src="http://www.youtube.com/embed/dQw4w9WgXcQ" frameborder="0" allowfullscreen></iframe></center></html>