CH391L/S13/Ethics

From OpenWetWare

< CH391L/S13
Revision as of 03:10, 28 January 2013 by Neil R Gottel (Talk | contribs)
Jump to: navigation, search

Contents

Introduction

Bioethics is the study of ethical questions and problems within the field of biology. Bioethical questions may concern the entire planet(What amount of change to the biosphere of the Earth is morally acceptable?), or could be on a deeply personal level, such as the selection of certain genetic traits for a future child. For the purposes of this course, we'll go even smaller, all the way down to microbes, and the ethics of using synthetic biology to modify and improve microbes in the service of humanity. Of course, the products of synthetic biology do not exist within perfectly impermeable bubbles, so the net impact of synthetic biology must be considered.


The Presidential Commission for the Study of Bioethical Issues (PCSBI) published a report in December 2010 regarding the ethical ramifications of synthetic biology. This report was requested by U.S. president Barack Obama, in response to the announcement in May 2010 of the first self-replicating synthetic genome, belonging to the organism Mycoplasma mycoides JCVI-syn1.0[1].

iGEM teams are required to document their safety practices and the ethical implications of their projects[2].


Objections to synthetic biology

The term "synthetic biology" could almost be calculated to elicit a strongly negative response by anyone with a belief in the beauty of naturally evolved DNA.

According to the PCSBI, there were "...relatively few objections from religious or secular ethicists concerning the present status of the field"[3]. However, there are common concerns regarding the normal use (i.e. not abuses such as bioterrorism) that originate from both religious and secular philosophies. The phrase "playing god" is often used as a shorthand for decrying a particular experiment or procedure as being unnatural, and therefore unethical. Unfortunately, there is no discernible line between "natural" and "unnatural", and so the

Secular objections to synthetic biology can be found in the "Deep Ecology" philosophy, which emphasizes the right to life of all living things without regard to their value to humanity. Intrinsic to this philosophy is opposition to humanity's current domination and control of Earth. Therefore, the efforts of synthetic biologists to finely control organisms (albeit simple single-celled organisms) represent the latest attack by humanity on Nature. It is doubtful any reconcilliation between scientists and deep ecologists could be made, given that a fundamental property of science is the testing and quantification of the natural world.

Biosafety

The tools of synthetic biology can be considered "dual-use" technologies, which can be used for both productive, useful applications, but also for weapons of mass destruction. Therefore, synthetic biology's potential to benefit humanity must be weighed against the potential development of bioweapons. The creation of such bioweapons may be simply the reconstruction of a previously eradicated disease such as smallpox[4], increasing the lethality of existing diseases[5], or create entirely new diseases. A key consideration when weighing these possibilities is the resources and knowledge required to create a bioweapon. Will our biological future mirror the computing world, where malicious programs are easily available for relatively inexperienced hackers, and the most sophisticated are used in cyberwarfare between antagonistic nations?

Creating a bioweapon previously required resources and training that was only available to powerful industrial nations, such as the Soviet Union and the United States during the Cold War. This limited the possibility of a biological attack to a world war (and which would be the least of the worries of the irradiated survivors of such an event). The advance of science then rendered smaller nations able to develop bioweapons, and we are now in a situation where a single lab could develop a bioweapon. Extrapolating from current trends in DNA synthesis costs, computer aided design, and increases in the sophistication of DIY biology will likely lead to the ability of small groups, or even single individuals, to wreck havoc with homebrewed bioweapons. Returning the computer virus analogy, humanity could experience a future where the biological equivalent of black-hat hackers release viruses into the world. However, instead of stealing credit card numbers or emptying bank accounts, these "biohackers" could be introducing a lethal strain of the common cold, or an aerosolized ebola virus. Unfortunately, it is difficult to imagine how such a future could be prevented without draconian restrictions on the use of tools and techniques required for beneficial biological research.

Safety Guidelines[2]

International

USA

Conferences

References

  1. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA 3rd, and Smith HO. . pmid:18218864. PubMed HubMed [gibson]
    Creation of the first self-replicating synthetic genome by JCVI. Sparked off the previously mentioned report on the ethics of synbio.

  2. http://igem.org/Safety

    [igem]

    The iGEM connection: Teams are required to prove they're following correct safety procedures on their team wikis.

  3. http://bioethics.gov/cms/synthetic-biology-report

    [pcsbi]

    Report on the ethics of synthetic biology commissioned by President Obama. Provides a fairly exhaustive review of the state of synbio in 2010.

  4. http://www.guardian.co.uk/world/2006/jun/14/terrorism.topstories3

    [smallpoxguardian]

    Article in The Guardian where the show how easy it was to order parts of the smallpox genome.

  5. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, and Fouchier RA. . pmid:22723413. PubMed HubMed [birdflu]
    Controversial paper that demonstrated that A/H5N1 could be aerosolized by site-specific mutagenesis and serial transfer in ferrets.

All Medline abstracts: PubMed HubMed
Personal tools