CHE.496/2008/Assignments: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 17: Line 17:
====Assignment 3: Engineering principles====
====Assignment 3: Engineering principles====
<font color=blue>
<font color=blue>
# '''Synthetic biology - putting engineering into biology
# '''Synthetic biology - putting engineering into biology [http://bioinformatics.oxfordjournals.org/cgi/content/abstract/22/22/2790 link]
# '''Synthetic biology: new engineering rules for an emerging discipline
# '''Synthetic biology: new engineering rules for an emerging discipline [http://www.nature.com/msb/journal/v2/n1/full/msb4100073.html link]
</font>
</font>
====Assignment 4: Genetic programming====
====Assignment 4: Genetic programming====

Revision as of 19:56, 8 November 2007

CHE.496: Biological Systems Design Seminar

Home        People        Schedule        Assignments        Responses        Projects        Links        Help       

Assigned Readings

Assignment 1: Synthetic biology overview

  1. Intelligent Life
  2. Extreme genetic engineering: an introduction to synthetic biology

Assignment 2: Foundational technologies

  1. Foundations for engineering biology link
  2. Economics of synthetic biology link

Assignment 3: Engineering principles

  1. Synthetic biology - putting engineering into biology link
  2. Synthetic biology: new engineering rules for an emerging discipline link

Assignment 4: Genetic programming

  1. Idempotent vector design for standard assembly of biobricks
  2. Genetic parts to program bacteria

Assignment 5: Natural biological parts

  1. Another side of genomics: Synthetic biology as a means for the exploitation of whole-genome sequence information
  2. Codon bias and heterologous protein expression

Assignment 6: Practical applications

  1. Advances in synthetic biology: on the path from prototypes to applications
  2. Molecular switches for cellular sensors

Assignment 7: Social implications

  1. The promises and perils of synthetic biology
  2. DNA synthesis and biological security

Assignment 8: Engineering biology

  1. A partnership between biology and engineering link
  2. Fast, cheap and somewhat in control

Assignment 9: Biological machines

  1. Designing biological systems
  2. Biology by design: Reduction and synthesis of cellular components and behavior

Assignment 10: Minimal genomes

  1. Essential genes of a minimal bacterium
  2. Leaner and meaner genomes in E. coli

Assignment 11: Minimal cells

  1. Toward synthesis of a minimal cell
  2. Rebuilding microbial genomes

Assignment 12: Genetic circuit engineering

  1. A synthetic oscillatory network of transcriptional regulators
  2. Construction of a genetic toggle switch in Escherichia coli

Assignment 13: Genetic circuit engineering

  1. Environmentally controlled invasion of cancer cells by engineered bacteria
  2. Environmental signal integration by a modular AND gate

Assignment 14: Metabolic pathway engineering

  1. Production of isoprenoid pharmaceuticals by engineered microbes
  2. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli

Assignment 15: Systems biology

  1. The evolution of molecular biology into systems biology
  2. Integrating 'omic information: A bridge between genomics and systems biology
  3. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles

Assignment 16: Systems biology and synthetic biology

  1. Systems biology as a foundation for genome-scale synthetic biology
  2. From systems biology to synthetic biology
  3. Modular approaches to expanding the functions of living matter

Assignment 17: Computational Biology

  1. Modelling cellular behaviour
  2. Bioinformatics analysis for genome design and synthetic biology

Assignment 18: Biological networks

  1. Biological networks
  2. Programming and engineering biological networks

Assignment 19: Metabolic modeling

  1. Use of genome-scale microbial models for metabolic engineering
  2. Global physiological understanding and metabolic engineering of microorganisms based on omics studies
  3. Microbial regulatory and metabolic networks

Assignment 20: RNA synthetic biology

  1. RNA synthetic biology
  2. RNA and RNP as new molecular parts in synthetic biology

Assignment 21: The future of synthetic biology

  1. Synthetic biology: Navigating the challenges ahead
  2. Synthetic biology through the prism of scenarios