Cellular and molecular bioengineering laboratory: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Template:CAMBEL}}
[[Cellular and Molecular Bioengineering Laboratory: Research| <font face="trebuchet ms" style="color:#000"> '''Research''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Cellular and Molecular Bioengineering Laboratory:People | <font face="trebuchet ms" style="color:#000"> '''People''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Cellular and Molecular Bioengineering Laboratory:Collobration | <font face="trebuchet ms" style="color:#000"> '''Collobration ''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Cellular and Molecular Bioengineering Laboratory:Publication | <font face="trebuchet ms" style="color:#000"> '''Publication''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Cellular and Molecular Bioengineering Laboratory:Opportunity | <font face="trebuchet ms" style="color:#000"> '''Opportunity ''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Cellular and Molecular Bioengineering Laboratory:Journal Club| <font face="trebuchet ms" style="color:#000"> '''Journal Club ''' </font>]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;


<div style="padding: 10px; width: 733px; border: 5px solid #000000;">


===Welcome to the Nanotherapeutics Research Laboratory at Rice University!===


Our ultimate purpose is to harness the tools of synthetic chemistry and recombinant DNA
[[Image:YZ_group.gif]]
technology to engineer bio-inspired nanodevices for the detection and treatment of
human diseases.


Our research is highly multi-disciplinary, relying on the efforts of scientists, engineers,
== Multi-functional Nanocomposites for Biological Labeling and Diagnostics ==
and clinicians with diverse backgrounds and expertise. We seek to drive innovation by
There have been tremendous advances in the development of in-situ labeling and screening of different biological entities, ranging from cells to DNAs. Many approaches have been developed for this purpose, such as chemical encoding with molecular tags, organic fluorophores, fluorescent colloids, and Raman fingerprints.  
working at the interface of multiple fields, including Biophysics, Cell Biology,  
Regenerative Medicine, Drug/Gene Delivery, and Biomedical Imaging.


The development of labeling materials has been critically important. Some materials such as quantum nanodots, organic dyes and metal nanoparticles have been extensively used for biological labeling, however, they have to be surface modified to better suit their integration with biological systems. Recently, synthesis of monodisperse polymer nanospheres has stimulated great interest and incorporation of fluorophores in these nanospheres is particularly attractive.


<center>[[Image:Suhlab.jpg]]</center>
In these nanocomposites, organic polymer can not only stabilize the nanoparticles in a solid matrix, but also effectively combine the peculiar features of organic and inorganic components and thus resulting in novel properties. These materials can bring new and unique capabilities to a variety of biomedical applications ranging from diagnosis of diseases to novel therapies.
       
   
==Micropatterning of Biomolecules via Manipulation of Micro/Nano Spheres==


Micropatterning of biomolecules, the attachment of biomoloecules within designated regions on solid surfaces while preventing nonspecific adhesion at other regions, forms the basis of microarray technnology. It has found many applications in various fields such as the diagnosis of disease, drug discovery, environmental testing, biological studies, etc.


</div>
We are developing a new technique of micropatterning which allows the integration of non-planar spots on a planar microarray via anipulation of micro/nano spheres.
__NOTOC__

Latest revision as of 01:45, 3 September 2008

Research        People        Collobration        Publication        Opportunity        Journal Club       


Multi-functional Nanocomposites for Biological Labeling and Diagnostics

There have been tremendous advances in the development of in-situ labeling and screening of different biological entities, ranging from cells to DNAs. Many approaches have been developed for this purpose, such as chemical encoding with molecular tags, organic fluorophores, fluorescent colloids, and Raman fingerprints.

The development of labeling materials has been critically important. Some materials such as quantum nanodots, organic dyes and metal nanoparticles have been extensively used for biological labeling, however, they have to be surface modified to better suit their integration with biological systems. Recently, synthesis of monodisperse polymer nanospheres has stimulated great interest and incorporation of fluorophores in these nanospheres is particularly attractive.

In these nanocomposites, organic polymer can not only stabilize the nanoparticles in a solid matrix, but also effectively combine the peculiar features of organic and inorganic components and thus resulting in novel properties. These materials can bring new and unique capabilities to a variety of biomedical applications ranging from diagnosis of diseases to novel therapies.


Micropatterning of Biomolecules via Manipulation of Micro/Nano Spheres

Micropatterning of biomolecules, the attachment of biomoloecules within designated regions on solid surfaces while preventing nonspecific adhesion at other regions, forms the basis of microarray technnology. It has found many applications in various fields such as the diagnosis of disease, drug discovery, environmental testing, biological studies, etc.

We are developing a new technique of micropatterning which allows the integration of non-planar spots on a planar microarray via anipulation of micro/nano spheres.