Chadwick lab:Publications

From OpenWetWare
Revision as of 08:36, 10 December 2013 by DeEtte Starr (talk | contribs)
Jump to navigationJump to search

Home        Research        Contact        Internal        Lab Members        Publications        Talks       

Recent Publications

    14. Towards the Rational Design of Crystalline Surfaces for Heteroepitaxy: The Role of Molecular Functionality. Chadwick K., Chen J., Myerson A.S., and Trout B.L. Crystal Growth & Design 12 (2012): 1159-1166.

    13. Separation of Impurities from Active Pharmaceutical Ingredients by Selective Co-Crystal Formation. Hsi, K., Chadwick, K., Fried A., Kenny, M., and Myerson, A. S. CrystEngComm 14 (2012): 2386-2388.

    12. The Crystallization and Characterization of Composite Spherical Particles. Quon J. L., Chadwick K., Myerson A. S., Hatton T. A., Trout B. L. Manuscript being prepared for submission to Organic Process Research and Development (2012).

    11. The Effect of Substrate Surface Morphology on the Nucleation Kinetics of Acetaminophen. Quon J. L., Chadwick K., Sheu I., Brettmann B. K., Myerson A. S., Trout B. L. Manuscript being prepared for submission to Crystal Growth and Design (2012).

    10. Self Promoted Heterogeneous Nucleation: Crystallization Controlled by Cooperativity. Chadwick K., Wood G., Sheu I., Levina A., Myerson A. S., Trout B. L. Manuscript being prepared for submission to the Journal of the American Chemical Society (2012).

    9. A novel thin film-based pharmaceutical tablet manufacturing process: formulation, processing, and properties. Du Y., Luna L. E., Chadwick K., Kim K. T., Xi L., Myerson A. S., Trout B. L. Manuscript submitted to Pharmaceutical Research (2012).

    8. Making a Disappearing Polymorph Reappear: Controlling Polymorphism Using Crystalline Substrates. Chadwick K., Ma X., Myerson A. S., Trout B. L. Manuscript submitted to CrystEngComm (2012).

    7. Polymorphic Control by Heterogeneous Nucleation – A New Method for Selecting Crystalline Substrates. Chadwick K., Myerson A. S., Trout B. L. CrystEngComm 2011; 13; 6625-6627.

    6. Solubility, metastable zone width measurement and crystal growth of the 1:1 benzoic acid/isonicotinamide cocrystal in solutions of variable stoichiometry. Boyd, S.; Back, K.; Chadwick, K.; Davey, R. J.; Seaton, C. C. Journal of Pharmaceutical Science 2010; 99; 3779-3786.

    5. Designing Acid/Acid Co-Crystals through the Application of Hammett Substituent Constants. Seaton, C. C.; Chadwick, K.; Sadiq, G.; Guo, K.; Davey, R. J. Crystal Growth & Design 2010; 10; 726-733.

    4. Crystallisation from Water-in-Oil Emulsions As a Route to Spherical Particulates: Glycine and the Hydrochloride Salts of Glutamic Acid and Ephedrine. Chadwick, K.; Davey, R. J.; Mughal, R.; Marziano, I. From Organic Process Research & Development 2009; 13; 1284-1290.

    3. The utility of a ternary phase diagram in the discovery of new co-crystal forms. Chadwick, K.; Davey, R.; Sadiq, G.; Cross, W.; Pritchard, R. CrystEngComm 2009; 11; 412-414.

    2. Cocrystallization: A Solution Chemistry Perspective and the Case of Benzophenone and Diphenylamine. Chadwick, K.; Davey, R. J.; Dent, G.; Pritchard, R. G.; Hunter, C. A.; Musumeci, D. Crystal Growth & Design 2009; 9; 1990-1999.

    1. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. Chadwick, K.; Davey, R.; Cross, W. CrystEngComm 2007; 9; 732-734.


    <html>Hosted by <a href="http://www.openwetware.org"><img src="http://openwetware.org/images/0/01/80x15_openwetware.png" border="0" /></a></right> </html>