Chandra:Publications: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
 
Line 57: Line 57:


*MM. Bharath, NR. Chandra, and MR. Rao. Molecular modeling of the chromatosome particle. Nucleic Acids Res, 31(14):4264-4274, Jul 2003.
*MM. Bharath, NR. Chandra, and MR. Rao. Molecular modeling of the chromatosome particle. Nucleic Acids Res, 31(14):4264-4274, Jul 2003.


In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix-turn-helix variant with its characteristic properties of binding to DNA at the major groove. Using the information of its preferential binding to four-way Holliday junction (HJ) DNA, a model of the domain complexed to HJ was built, which was subsequently used to position the globular domain onto the nucleosome. The model revealed that the primary binding site of the domain interacts with the extra 20 bp of DNA of the entering duplex at the major groove while the secondary binding site interacts with the minor groove of the central gyre of the DNA superhelix of the nucleosomal core. The positioning of the globular domain served as an anchor to locate the C-terminal domain onto the nucleosome to obtain the structure of the chromatosome particle. The resulting structure had a stem-like appearance, resembling that observed by electron microscopic studies. The C-terminal domain which adopts a high mobility group (HMG)-box-like fold, has the ability to bend DNA, causing DNA condensation or compaction. It was observed that the three S/TPKK motifs in the C-terminal domain interact with the exiting duplex, thus defining the path of linker DNA in the chromatin fiber. This study has provided an insight into the probable individual roles of globular and the C-terminal domains of histone H1 in chromatin organization.
In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix-turn-helix variant with its characteristic properties of binding to DNA at the major groove. Using the information of its preferential binding to four-way Holliday junction (HJ) DNA, a model of the domain complexed to HJ was built, which was subsequently used to position the globular domain onto the nucleosome. The model revealed that the primary binding site of the domain interacts with the extra 20 bp of DNA of the entering duplex at the major groove while the secondary binding site interacts with the minor groove of the central gyre of the DNA superhelix of the nucleosomal core. The positioning of the globular domain served as an anchor to locate the C-terminal domain onto the nucleosome to obtain the structure of the chromatosome particle. The resulting structure had a stem-like appearance, resembling that observed by electron microscopic studies. The C-terminal domain which adopts a high mobility group (HMG)-box-like fold, has the ability to bend DNA, causing DNA condensation or compaction. It was observed that the three S/TPKK motifs in the C-terminal domain interact with the exiting duplex, thus defining the path of linker DNA in the chromatin fiber. This study has provided an insight into the probable individual roles of globular and the C-terminal domains of histone H1 in chromatin organization.

Revision as of 23:43, 13 December 2005

Chandra Lab
Research
People
Courses
Software and Databases
Publications
Resources
Affiliation
Funding
Contact

SUPPLEMENTARY MATERIAL

  • TABLES "Combined in silico approach for defining T-cell epitopes from secretory proteins of M. tuberculosis" (submitted to Microbes and Infection).
  • Table I - M. tuberculosis peptide sequences showing homology with human proteins
  • Table II - Peptides from selected secretory proteins of M.tuberculosis foreign to human

PUBLICATIONS

2005

  • MG. Chaitra, S. Hariharaputran, NR. Chandra, MS. Shaila, and R. Nayak. Defining putative T cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential. Vaccine, 23(10):1265-1272, Jan 2005.

The identification of T cell epitopes from immune relevant antigens of Mycobacterium tuberculosis is a critical step in the development of a vaccine covering diverse populations. Two multigene families, PE-PGRS and PPE make up about 10 functions of the proteins coded by these large numbers of genes are unknown. All possible nonameric peptide sequences from PE and PPE proteins were analysed in silico for their ability to bind to 33 alleles of class I HLA. These results reveal that of all PE and PPE proteins, a significant number of these peptides are predicted to be high-affinity HLA binders, irrespective of the length of the protein. The pathogen peptides that could behave as self or partially self-peptides in the host were eliminated using a comparative study with human proteome, thus reducing the number of peptides for analysis. The structural basis for recognition of the nonamers by the respective HLA molecules thus predicted was analyzed by molecular modeling. The structural analysis showed good correlation with the binding prediction. The analysis also led to an understanding of the binding profile of the peptides with respect to different alleles of class I HLA. The predicted epitopes can be tested experimentally for their inclusion in a potential vaccine against tuberculosis thatis HLA haplotype-specific.


2004

  • S. Raval, SB. Gowda, DD. Singh, and NR. Chandra. A database analysis of jacalin-like lectins: sequence-structure-function relationships. Glycobiology, 14(12):1247-1263, Dec 2004.

Lectins are known to be important for many biological processes, due to their ability to recognize cell surface carbohydrates with high specificity. Plant lectins have been model systems to study protein-carbohydrate recognition, because individually they exhibit high sensitivity and as a group large diversity in recognizing carbohydrate structures. Although extensive studies have been carried out for legume lectins that have led to interesting insights into the sequence determinants of sugar recognition in them, frameworks with such specific correlations are not available for other plant lectin families. This study reports a large-scale data acquisition and extensive analysis of sequences and structures of beta-prism-I or jacalin-related lectins (JRLs) and shows that hypervariability in the binding site loops generates carbohydrate recognition diversity, a strategy analogous to that in legume lectins. Analyses of the size, conformation, and sequence variability in key regions reveal the existence of a common theme, encoded as a set of structural features over a common scaffold, in defining specificity. This study also points to the remarkable range of domain architectures, often arising out of gene duplication events in lectins of this family. The data analyzed here also indicate a spectacular variety of quaternary associations possible in this family of lectins that have implications for glycan recognition. These results thus provide sequence-structure-function correlations, an understanding of the molecular basis of carbohydrate recognition by beta-prism-I lectins, and also a rationale for engineering specific recognition capabilities in relevant molecules.

  • T. Prasad, T. Subramanian, S. Hariharaputran, HS. Chaitra, and N. Chandra. Extracting hydrogen-bond signature patterns from protein structure data. Appl Bioinformatics, 3(2-3):125-135, 2004.

Classification of protein sequences and structures into families is a fundamental task in biology, and it is often used as a basis for designing experiments for gaining further knowledge. Some relationships between proteins are detected by thesimilarities in their sequences, and many more by the similarities in their structures. Despite this, there are a number of examples of functionally similar molecules without any recognisable sequence or structure similarities, and there are also a number of protein molecules that share common structural scaffolds but exhibit different functions. Newer methods of comparing molecules are required in order to detect similarities and dissimilarities in protein molecules. In this article, it is proposed that the precise 3-dimensional disposition of key residues in a protein molecule is what matters for its function, or what conveys the 'meaning' for a biological system, but not what means it uses to achieve this. The concept of comparing two molecules through their intramolecular interaction networks is explored, since these networks dictate the disposition of amino acids in a protein structure. First, signature patterns, or fingerprints, of interaction networks in pre-classified protein structural families are computed using an approach to find structural equivalences and consensus hydrogen bonds. Five examples from different structural classes are illustrated. These patterns are then used to search the entire Protein Data Bank, an approach through which new, unexpected similarities have been found. The potential for finding relationships through this approach is highlighted. The use of hydrogen-bond fingerprints as a new metric for measuring similarities in protein structures is also described.

  • P. Kumar, AG. Rao, S. Hariharaputran, N. Chandra, and LR. Gowda. Molecular mechanism of dimerization of Bowman-Birk inhibitors. Pivotal role of ASP76 in the dimerzation. J Biol Chem, 279(29):30425-30432, Jul 2004.

Horsegram (Dolichos biflorus), a protein-rich leguminous pulse, is a crop native to Southeast Asia and tropical Africa. The seeds contain multiple forms of Bowman-Birk type inhibitors. The major inhibitor HGI-III, from the native seed with 76 amino acid residues exists as a dimer. The amino acid sequence of three isoforms of Bowman-Birk inhibitor from germinated horsegram, designated as HGGI-I, HGGI-II, and HGGI-III, have been obtained by sequential Edman analyses of the pyridylethylated inhibitors and peptides derived therefrom by enzymatic and chemical cleavage. The HGGIs are monomers, comprising of 66, 65, and 60 amino acid residues, respectively. HGGI-III from the germinated seed differs from the native seed inhibitorin the physiological deletion of a dodecapeptide at the amino terminus and a tetrapeptide, -SHDD, at the carboxyl terminus. The study of the state of association of HGI-III, by size-exclusion chromatography and SDS-PAGE in the presence of 1 mM ZnCl2, has revealed the role of charged interactions in the monomer<?> dimer equilibria. Chemical modification studies of Lys and Arg have confirmed the role of charge interactions in the above equilibria. These results support the premise that a unique interaction, which stabilizes the dimer, is the cause of self-association in the inhibitors. This interaction in HGI-III involves the epsilon-amino group of the Lys24 (P1 residue) at the first reactive site of one monomer and the carboxyl of an Asp86 at the carboxyl terminus of the second monomer. Identification of the role of these individual amino acids in the structure and stability of the dimer was accomplished by chemical modifications, multiple sequence alignment of legume Bowman-Birk inhibitors, and homology modeling. The state of association may also influence the physiological and functional role of these inhibitors.

  • S. Dhanasekaran, NR. Chandra, BK. Chandrasekhar Sagar, PN. Rangarajan, and G. Padmanaban. Delta-aminolevulinic acid dehydratase from Plasmodium falciparum: indigenous versus imported. J Biol Chem, 279(8):6934-6942, Feb 2004.

The heme biosynthetic pathway of the malaria parasite is a drug target and the import of host delta-aminolevulinate dehydratase (ALAD), the second enzyme of the pathway, from the red cell cytoplasm by the intra erythrocytic malaria parasite has been demonstrated earlier in this laboratory. In this study, ALAD encoded by the Plasmodium falciparum genome (PfALAD) has been cloned, the protein overexpressed in Escherichia coli, and then characterized. The mature recombinant enzyme (rPfALAD) is enzymatically active and behaves as an octamer with a subunit Mr of 46,000. The enzyme has an alkaline pH optimum of 8.0 to 9.0. rPfALAD does not require any metal ion for activity, although it is stimulated by 20-30 of Mg2+. The enzyme is inhibited by Zn2+ and succinylacetone. The presence of PfALAD in P. falciparum can be demonstrated by Western blot analysis and immunoelectron microscopy. The enzyme has been localized to the apicoplast of the malaria parasite. Homology modeling studies reveal that PfALAD is very similar to the enzyme species from Pseudomonas aeruginosa, but manifests features that are unique and different from plant ALADs as well as from those of the bacterium. It is concluded that PfALAD, while resembling plant ALADs in terms of its alkaline pH optimum and apicoplast localization, differs in its Mg2+ independence for catalytic activity or octamer stabilization. Expression levels of PfALAD in P. falciparum, based on Western blot analysis, immunoelectron microscopy, and EDTA-resistant enzyme activity assay reveals that it may account for about 10 in the parasite, the rest being accounted for by the host enzyme imported by the parasite. It is proposed that the role of PfALAD may be confined to heme synthesis in the apicoplast that may not account for the total de novo heme biosynthesis in the parasite.

2003

  • J. Shobini, AK. Mishra, and N. Chandra. Conformation of gramicidin-A in CTAB micellar media. J Photochem Photobiol B, 70(2):117-124, May-Jun 2003.

Gramicidin A (gA) is a linear pentadecapeptide, which exhibits various conformations depending on the environment. The conformational behavior of gA in spherical and rod-shaped cationic micelles formed by cetyltrimethylammonium bromide (CTAB) surfactant has been studied using circular dichroism (CD) and fluorescence spectroscopy, and a probable structure of gramicidin A in CTAB media has been proposed. A CD study shows that gramicidin A assumes beta(6.3) helical structure in cationic spherical as well as rod-shaped CTAB micellar media. Modeling studies show the flexibility of the side chain conformation particularly in tryptophan-9. Study of intrinsic fluorescence of tryptophans in gramicidin A indicates three distinct environments for the four-tryptophan residues in CTAB media.

  • G. Ramachandraiah, NR. Chandra, A. Surolia, and M. Vijayan. Computational analysis of multivalency in lectins: structures of garlic lectin-oligosaccharide complexes and their aggregates. Glycobiology, 13(11):765-775, Nov 2003.

Multivalency in lectins is a phenomenon that has been discussed at considerable length. The structural basis for the role of multivalency in garlic lectin has been investigated here through computational studies. Biochemical studies have shown that the binding affinity of garlic lectin for high mannose oligosaccharides is orders of magnitude greater than that for mannose. Modeling and energy calculations clearly indicate that such increase in affinity cannot be accounted for by binding of these oligosaccharides at any of the six sites of a garlic lectin dimer. These studies also indicate that a given oligosaccharide cannot bind simultaneously to more than one binding site on a lectin dimer. The possibility of a given oligosaccharide simultaneously binding to and hence linking two or more lectin molecules was therefore explored. This study showed that trimannosides and higher oligomers can cross-link lectin dimers, amplifying the protein-oligosaccharide interactions severalfold, thus explaining the role of multivalency in enhancing affinity. A comprehensive exploration of all possible cross-links posed a formidable computational problem. Even a partial exploration involving a carefully chosen region of the conformational space clearly showed that a given dimer pair can be cross-linked not only by a single oligosaccharide molecule but also simultaneously by two oligosaccharides. The number of such possible double cross-links, including those forming interesting tetrameric structures, generally increases with the size of the oligosaccharide, correlating with the biochemical data. In addition to their immediate relevance to garlic lectin, these studies are of general interest in relation to lectin-oligosaccharide interactions.

  • T. Prasad, MN. Prathima, and N. Chandra. Detection of hydrogen-bond signature patterns in protein families. Bioinformatics, 19(1):167-168, Jan 2003.

We have developed a WWW server, HBPRINT, for the identification of hydrogen-bond signature patterns in protein families from their structures. The server calculates (a) common hydrogen bonds between two structures (b) a hydrogen-bond fingerprint in a set of structural neighbours and (c) details of conserved hydrogen bonds. The server also enables the visualization of the hydrogen bond network comprising the signature pattern. AVAILABILITY: HBPRINT and a tutorial are available from http://144.16.93.115/hb_page/index.html.

  • VB. Konkimalla and N. Chandra. Determinants of histamine recognition: implications for the design of antihistamines. Biochem Biophys Res Commun, 309(2):425-431, Sep 2003.

Towards understanding how histamine, a vital neurotransmitter, can perform multiple physiological tasks, an analysis of the different proteins that bind histamine is reported here. Their structural comparison reveals conformational rigidity of histamine. Yet, flexibility in the modes of histamine binding has been observed, which appears to suit specific biological roles of the proteins. These results will be helpful in developing specific antihistamines and also in understanding the pharmacological and toxicological profiles of existing antihistamines.

  • S. Datta, N. Ganesh, NR. Chandra, K. Muniyappa, and M. Vijayan. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins, 50(3):474-485, Feb 2003.

RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.

  • S. Datta, R. Krishna, N. Ganesh, NR. Chandra, K. Muniyappa, and M. Vijayan. Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J Bacteriol, 185(14):4280-4284, Jul 2003.

The crystal structures of Mycobacterium smegmatis RecA (RecA(Ms)) and its complexes with ADP, ATPgammaS, and dATP show that RecA(Ms) has an expanded binding site like that in Mycobacterium tuberculosis RecA, although there are small differences between the proteins in their modes of nucleotide binding. Nucleotide binding is invariably accompanied by the movement of Gln 196, which appears to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding loops. These observations provide a framework for exploring the known properties of the RecA proteins.

  • MM. Bharath, NR. Chandra, and MR. Rao. Molecular modeling of the chromatosome particle. Nucleic Acids Res, 31(14):4264-4274, Jul 2003.

In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix-turn-helix variant with its characteristic properties of binding to DNA at the major groove. Using the information of its preferential binding to four-way Holliday junction (HJ) DNA, a model of the domain complexed to HJ was built, which was subsequently used to position the globular domain onto the nucleosome. The model revealed that the primary binding site of the domain interacts with the extra 20 bp of DNA of the entering duplex at the major groove while the secondary binding site interacts with the minor groove of the central gyre of the DNA superhelix of the nucleosomal core. The positioning of the globular domain served as an anchor to locate the C-terminal domain onto the nucleosome to obtain the structure of the chromatosome particle. The resulting structure had a stem-like appearance, resembling that observed by electron microscopic studies. The C-terminal domain which adopts a high mobility group (HMG)-box-like fold, has the ability to bend DNA, causing DNA condensation or compaction. It was observed that the three S/TPKK motifs in the C-terminal domain interact with the exiting duplex, thus defining the path of linker DNA in the chromatin fiber. This study has provided an insight into the probable individual roles of globular and the C-terminal domains of histone H1 in chromatin organization.

2002

  • G. Ramachandraiah, NR. Chandra, A. Surolia, and M. Vijayan. Re-refinement using reprocessed data to improve the quality of the structure: a case study involving garlic lectin. Acta Crystallogr D Biol Crystallogr, 58(Pt 3):414-420, Mar 2002.

The structure of dimeric garlic lectin was previously determined to an effective resolution of 2.8A using X-ray intensity data processed by the XDS package and refined using X-PLOR [Chandra et al. (1999), J. Mol. Biol. 285, 1157?1168]. Repeated attempts to grow better crystals with a view to improving the definition of the structure did not succeed. The available raw data were then reprocessed using DENZO. The structure was re-refined with both X-PLOR and CNS separately using the reprocessed data, which extended to a resolution of 2.2A. These two sets of refinements and the two sets using the XDS-processed data afforded an opportunity to compare the performance of different data-processing and refinement packages when dealing with data from weakly diffracting crystals. The best results were obtained when CNS was employed for refinement using data processed by DENZO. The quality and the resolution of the map and the definition of the structure improved substantially. In particular, the amino-acid residues at the variable locations in the sequence, and hence the isolectins, could be identified with a high degree of confidence. It could be established that the crystal asymmetric unit contains two identical heterodimers. The new refined structure also provided a better definition of other finer structural details.

  • MM. Bharath, NR. Chandra, and MR. Rao. Prediction of an HMG-box fold in the C-terminal domain of histone H1: insights into its role in DNA condensation. Proteins, 49(1):71-81, Oct 2002.

In eukaryotes, histone H1 promotes the organization of polynucleosome filaments into chromatin fibers, thus contributing to the formation of an important structural framework responsible for various DNA transaction processes. The H1 protein consists of a short N-terminal nose, a central globular domain, and a highly basic C-terminal domain. Structure prediction of the C-terminal domain using fold recognition methods reveals the presence of an HMG-box-like fold. We recently showed by extensive site-directed and deletion mutagenesis studies that a 34 amino acid segment encompassing the three S/TPKK motifs, within the C-terminal domain, is responsible for DNA condensing properties of H1. The position of these motifs in the predicted structure corresponds exactly to the DNA-binding segments of HMG-box-containing proteins such as Lef-1 and SRY. Previous analyses have suggested that histone H1 is likely to bend DNA bound to the C-terminal domain, directing the path of linker DNA in chromatin. Prediction of the structure of this domain provides a framework for understanding the higher order of chromatin organization.

  • MM. Bharath, S. Ramesh, NR. Chandra, and MR. Rao. Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry, 41(24):7617-7627, Jun 2002.

The C-terminus of histone H1 is necessary for the folding of polynucleosomal arrays into higher-order structure(s) and contains octapeptide repeats each having DNA binding S/TPKK motifs. These repeat motifs were earlier shown to mimic the DNA/chromatin-condensing properties of the C-terminus of histone H1 (Khadake, J. R., and Rao, M. R. S. (1995) Biochemistry 36, 1041-1051). In the present study, we have generated a series of C-terminal mutants of rat histone H1d and studied their DNA-condensation properties. The single proline to alanine mutation in the S/TPKK motifs either singly or in combination resulted in only a 20 DNA-condensation property of histone H1. Deletion of all the three S/TPKK motifs resulted in a 45 octapeptide repeats encompassing the S/TPKK motifs were deleted, there was again a 45 when the entire 34 amino acid stretch (residue 145-178) was deleted, there was nearly a 90 histone H1d. Interestingly, deletion of the 10 amino acid spacer between the octapeptide repeats (residues 161-170) also reduced the DNA condensation by 70 before the 34 amino acid stretch and after the globular domain and the region (residues 184-218) immediately after the 34 amino acid stretch had only a marginal effect on DNA condensation. The importance of the 34 amino acid stretch, including the 10 amino acid spacer, was also demonstrated with the recombinant histone H1d C-terminus. We have also determined the induced alpha-helicity of histone H1 and its various mutants in the presence of 60 the experimentally determined induced helical contents agree with the theoretical predictions of secondary structural elements in the C-terminus of histone H1d. Thus, we have identified a 34 amino acid stretch in the C-terminus of histone H1d as the DNA-condensing domain.

2001

  • J. Shobini, AK. Mishra, K. Sandhya, and N. Chandra. Interaction of coumarin derivatives with human serum albumin: investigation by fluorescence spectroscopic technique and modeling studies. Spectrochim Acta A Mol Biomol Spectrosc, 57A(5):1133-1147, Apr 2001.

Interactions of several 7-aminocoumarins with human serum albumin (HSA) were studied by using fluorescence spectroscopic technique and modeling studies. There is a large change in fluorescence spectral parameters like intensity, emission maxima and anisotropy for all aminocoumarins. There were two binding sites for cou-1, 311 and a single binding site for other coumarins. The binding constant(s) are large for all coumarins reflective of a strong binding. These spectral studies show that structural variants at the third, fourth and seventh position affects binding. The probable location of these coumarins in domain II has been predicted based on modeling. The effect of structural modification on the efficiency of binding was obtained for various other coumarins, using modeling.

  • NR. Chandra, MM. Prabu, K. Suguna, and M. Vijayan. Structural similarity and functional diversity in proteins containing the legume lectin fold. Protein Eng, 14(11):857-866, Nov 2001.

Knowledge of structural relationships in proteins is increasingly proving very useful for in silico characterizations and is also being exploited as a prelude to almost every investigation in functional and structural genomics. A thorough understanding of the crucial features of a fold becomes necessary to realize the full potential of such relationships. To illustrate this, structures containing the legume lectin-like fold were chosen for a detailed analysis since they exhibit a total lack of sequence similarity among themselves and also belong to diverse functional families. A comparative analysis of 15 different families containing this fold was therefore carried out, which led to the determination of the minimal structural principles or the determining region of the fold. A critical evaluation of the structural features, such as the curvature of the front sheet, the presence of the hydrophobic cores and the binding site loops, suggests that none of them are crucial for either the formation or the stability of the fold, but are required to generate diversity and specificity to particular carbohydrates. In contrast, the presence of the three sheets in a particular geometry and also their topological connectivities seem to be important. The fold has been shown to tolerate different types of protein-protein associations, most of them exhibiting different types of quaternary associations and some even existing as complexes with other folds. The function of every family in this study is discussed with respect to its fold, leading to the suggestion that this fold can be linked to carbohydrate recognition in general.

2000

  • G. Ramachandraiah and NR. Chandra. Sequence and structural determinants of mannose recognition. Proteins, 39(4):358-364, Jun 2000.

Mannose, an abundant cell surface monosaccharide binds to a diverse set of receptors, which are involved in a variety of important cellular processes. Structural analysis has been carried out on all the proteins containing non-covalently bound mannose as a monosaccharide in the Protein Data Bank, to identify common recognition principles. Proteins, highly specific to mannose, belonging to the super family of bulb lectins, are found to contain a consensus sequence motif QXDXNXVXY, which has been identified to be essential for mannose binding. Analysis of this motif in the crystal structures of bulb lectins has led to the understanding of the contribution of individual residues in mannose recognition. Comparison with other mannose binding proteins, reveals common hydrogen bonding patterns in all of them, despite differences in sequence, overall fold and the substructures at the binding sites of individual proteins. A database analysis also suggests that although the topology of the backbone, as at the binding site in bulb lectins, can generate mannose binding capability in a few other proteins, sequence and disposition of not only the residues in the motif, but also the residues in the neighborhood play a crucial role in allowing that property to be retained.

  • S. Datta, MM. Prabu, MB. Vaze, N. Ganesh, NR. Chandra, K. Muniyappa, and M. Vijayan. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res, 28(24):4964-4973, Dec 2000.

Sequencing of the complete genome of Mycobacterium tuberculosis, combined with the rapidly increasing need to improve tuberculosis management through better drugs and vaccines, has initiated extensive research on several key proteins from the pathogen. RecA, a ubiquitous multifunctional protein, is a key component of the processes of homologous genetic recombination and DNA repair. Structural knowledge of MtRecA is imperative for a full understanding of both these activities and any ensuing application. The crystal structure of MtRecA, presented here, has six molecules in the unit cell forming a 6(1) helical filament with a deep groove capable of binding DNA. The observed weakening in the higher order aggregation of filaments into bundles may have implications forrecombination in mycobacteria. The structure of the complex reveals the atomic interactions of ADP-AlF(4), an ATP analogue, with the P-loop-containing binding pocket. The structures explain reduced levels of interactions of MtRecA with ATP, despite sharing the same fold, topology and high sequence similarity with EcRecA. The formation of a helical filament with a deep groove appears to be an inherent property of MtRecA. The histidine in loop L1 appears to be positioned appropriately for DNA interaction.

1999—1995

  • M. Vijayan and N. Chandra. Lectins. Curr Opin Struct Biol, 9(6):707-714, Dec 1999.


Lectins - carbohydrate-binding proteins involved in a variety of recognition processes - exhibit considerable structural diversity. Three new lectin folds and further elaborations of known folds have been described recently. Large variability in quaternary association resulting from small alterations in essentially the same tertiary structure is a property exhibited specially by legume lectins. The strategies used by lectins to generate carbohydrate specificity include the extensive use of water bridges, post-translational modification and oligomerization. Recent results pertaining to influenza and foot-and-mouth viruses further elaborate the role of lectins in infection.

  • NR. Chandra, G. Ramachandraiah, K. Bachhawat, TK. Dam, A. Surolia, and M. Vijayan. Crystal structure of a dimeric mannose-specific agglutinin from garlic: quaternary association and carbohydrate specificity. J Mol Biol, 285(3):1157-1168, Jan 1999.

A mannose-specific agglutinin, isolated from garlic bulbs, has been crystallized in the presence of a large excess of alpha-d-mannose, in space group C2 and cell dimensions, a=203.24, b=43.78, c=79.27 A, beta=112.4 degrees, with two dimers in the asymmetric unit. X-ray diffraction data were collected up to a nominal resolution of 2.4 A and the structure was solved by molecular replacement. The structure, refined to an R-factor of 22.6 similar to that in the snowdrop lectin, comprising three antiparallel four-stranded beta-sheets arranged as a 12-stranded beta-barrel, with an approximate internal 3-fold symmetry. This agglutinin is, however, a dimer unlike snowdrop lectin which exists as a tetramer, despite a high degree of sequence similarity between them. A comparison of the two structures reveals a few substitutions in the garlic lectin which stabilise it into a dimer and prevent tetramer formation. Three mannose molecules have been identified on each subunit. In addition, electron density is observed for another possible mannose molecule per dimer resulting in a total of seven mannose molecules in each dimer. Although the mannose binding sites and the overall structure are similar in the subunits of snowdrop and garlic lectin, their specificities to glycoproteins such as GP120 vary considerably. These differences appear, in part, to be a direct consequence of the differences in oligomerisation, implying that variation in quaternary association may be a mode of achieving oligosaccharide specificity in bulb lectins.

  • R. Ravishankar, NR. Chandra, and M. Vijayan. X-ray studies on crystalline complexes involving amino acids and peptides XXXIV. Novel mode of aggregation, interaction patterns and chiral effects in the maleic acid complexes of DL- and L- arginine. J Biomol Struct Dyn, 15(6):1093-1100, Jun 1998.

Amino acid - carboxylic acid complexes provide useful information in relation to molecular interactions in present day biological systems and to prebiotic self-organisation. The crystal structures of the complexes of maleic acid with DL- arginine (orthorhombic; Pca2(1); a=15.9829, b=5.4127, c=16.1885; R=0.0522 for 956 reflections) and L- arginine (triclinic; P1; a=5.2641, b=8.0388, c=9.7860, alpha=106.197, beta=97.275, gamma=101.64; R=0.039 for 1749 reflections) have been determined. The complexes are made up of positively charged zwitterionic arginine molecules and negatively charged semi-maleate ions which contain an intramolecular symmetric O-H-O hydrogen bond. In both the structures, the amino acid molecules aggregate into layers. In each layer, S2 head-to-tail sequences are interconnected through specific intermolecular interactions between alpha-carboxylate and guanidyl groups, an arrangement observed for the first time in crystal structures involving arginine. The carboxylate-guanidyl interactions are of different types in the two complexes and consequently aggregation patterns in them exhibit substantial differences. Interactions between the amino acid layers involve the semi-maleate ions in both the complexes. In addition, water-bridges also exist in the L complex. The full potential of the guanidyl group for specific interactions is realized in both the structures. The L complex contains an array of water-mediated salt bridges. The structures demonstrate that the effect of chirality on molecular aggregation can span a wide range.

  • NR. Chandra, H. Muirhead, JJ. Holbrook, BE. Bernstein, WG. Hol, and RB. Sessions. A general method of domain closure is applied to phosphoglycerate kinase and the result compared with the crystal structure of a closed conformation of the enzyme. Proteins, 30(4):372-380, Mar 1998.

The occurrence of large domain motions associated with the mechanism of action of many proteins is well established. We present a general method of predicting domain closure applicable to proteins containing domains separated by an apparent hinge. The method attempts to allow for natural directional bias within the closing protein by repeatedly applying a weak pulling force over a short distance between pairs of atoms chosen at random in the two domains in question. Appropriate parameters governing the pulling function were determined empirically. The method was applied to the bi-lobal protein PGK and a closed-form activated ternary complex generated for Bacillus stearothermophilus PGK. This model was compared with the recently determined crystal structure of closed-form Trypanosoma brucei PGK. The model predicts thecorrect hinge regions, although the magnitude of movement at one hinge point was overestimated, and provides a reasonable representation of the closed-form ternary complex.

  • NR. Chandra, TK. Dam, A. Surolia, and M. Vijayan. Crystallization and preliminary crystallographic studies on the mannose-specific lectin from garlic. Acta Crystallogr D Biol Crystallogr, 53(Pt 6):787-788, Nov 1997.

A mannose-specific agglutinin from garlic (Allium sativum) which forms part of a well conserved super-family of bulb lectins has been purified and crystallized by the hanging-drop vapour-diffusion technique, by equilibrating with a 20 solution of PEG 8000 in the presence of alpha-D-mannose. Crystals of the dimeric form of this protein are monoclinic C2 with unit-cell dimensions a = 203.2, b = 43.8, c = 79.3 A and beta = 112.4 degrees and have two dimers in the asymmetric unit. Data have been collected to 2.4 A resolution and the structure solved by molecular replacement using the coordinates of the snowdrop lectin as the search model.

  • RA. Kumar, MB. Vaze, NR. Chandra, M. Vijayan, and K. Muniyappa. Functional characterization of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis. Biochemistry, 35(6):1793-1802, Feb 1996.

The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promotedby MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.

  • RV. Kishan, NR. Chandra, C. Sudarsanakumar, K. Suguna, and M. Vijayan. Water-dependent domain motion and flexibility in ribonuclease A and the invariant features in its hydration shell. An X-ray study of two low-humidity crystal forms of the enzyme. Acta Crystallogr D Biol Crystallogr, 51(Pt 5):703-710, Sep 1995.

The crystal structures of 88 and 79 ribonuclease A, resulting from water-mediated transformations, have been refined employing the restrained least-squares method using X-ray data collected on an area detector to R = 0.173 for 15 326 observed reflections in the 10-1.5 A resolution shell and R = 0.176 for 8534 observed reflections in the 10-1.8 A shell, respectively. The comparison of these structures with those of the native, the phosphate-bound and the sulfate-bound forms demonstrates that the mobility of the ribonuclease A molecule involves hinge-bending movement of the two domains and local flexibility within them, particularly at the termini of regular secondary structures and in loops. The comparison also leads to the identification of 31 invariant water molecules in the hydration shell of the enzyme, many of which are involved in holding different parts of the molecule together and in stabilizing local structure. The conformational changes that accompany the partial removal of the surrounding water, particularly those observed in the 79 form, could be similar to those that occur during enzyme action.

Pre-1995

  • H. C. Joao, R.J.P. Williams, J.A. Littlechild, R. Nagasuma, and H.C. Watson. An investigation of large inhibitors binding to phosphoglycerate kinase and their effect on anion activation. European Journal of Biochemistry, 205(3):1077-1088, 1992.
  • Vani Brahmachari, Nagasuma.R, and Samir K. Brahmachari. Preparation of megabase-size DNA from adult insects and mammalian spleen for Pulsed-Field Gel Electrophoresis. Journal of Genetics, 68(3):185-188, 1989.