Choosing reference genes for qPCR normalisation

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(*** page created *** (moved from QRT-PCR; only summary there))
(lead)
Line 1: Line 1:
 +
Quantifying mRNA via cDNA levels as in a [[QRT-PCR]] hinges on the references you choose. If you pick only one reference gene and your pick is not constant across different conditions or samples, your results will be skewed. Pick several and check whether they satisfy the criteria for a good reference gene.
 +
 +
== The ideal reference gene ==
 +
A mRNA used as reference or standard of a [[QRT-PCR]] (and other experiments) should have the following properties:
A mRNA used as reference or standard of a [[QRT-PCR]] (and other experiments) should have the following properties:
* expressed in all cells
* expressed in all cells

Revision as of 09:30, 6 February 2008

Quantifying mRNA via cDNA levels as in a QRT-PCR hinges on the references you choose. If you pick only one reference gene and your pick is not constant across different conditions or samples, your results will be skewed. Pick several and check whether they satisfy the criteria for a good reference gene.

Contents

The ideal reference gene

A mRNA used as reference or standard of a QRT-PCR (and other experiments) should have the following properties:

  • expressed in all cells
  • constant copy number in all cells
  • medium copy number for more accuracy (or similar copy number to gene of interest)

Common reference mRNAs linked to known mouse primer pairs:

  • β-actin (common cytoskeletal enzyme) [1], [2]
  • glyceraldehyde-3-phosphate dehydrogenase GAPDH (common metabolic enzyme) [3], [4]
  • ribosomal proteins (e.g. RPLP0) and RNAs (28S or 18S)
  • cyclophilin mRNA
  • MHC I (major histocompatibility complex I)

Search primer repositories like RTPrimerDB (see also below) and check the literature before doing it from scratch.
Check out the Eccles Lab collection of human and mouse qPCR reference genes on OWW.

Additional considerations in choosing reference genes

Stability

  • Ajeffs 06:55, 21 April 2007 (EDT): In addition to the given requirements of good (well, acceptable) specificity and efficiency of the reference gene primers, the next most important aspect of reference gene selection is stability. I don't care if the CT value of my reference genes (yes, genes, not gene) is close to the target genes/s or not - as long as the efficiency of all the primers is similar, and they are all working within their respective limits of detection i.e. linear range, then the stability of the reference genes between samples, treatments, etc. is the most crucial aspect of generating believable qPCR results.

Selection

  • Ajeffs 06:55, 21 April 2007 (EDT): Screen a handful of ref genes, select the most stable using genorm, bestkeeper etc, use at least 2 reference genes for subsequent reactions and normalisation. Inlcude your genorm M values when publishing qPCR data.

Use of 18S

  • Ajeffs 06:55, 21 April 2007 (EDT): 18S is generally a terrible choice for a reference gene thanks to the combination of (i) high abundance (creating a 1:100 dilution of template to run in parallel with neat template just for 18S is a complete drag); and (ii) having different degradation characteristics to mRNAs (it appears to be more resistant to degradation). However, if you can show that you have screened 5-10 reference genes, and 18S is still the best for your specific situation then so be it (but do try 28S if you or you PI is hung-up on 18S).
Personal tools