DNAmazingMission

From OpenWetWare
Revision as of 07:53, 2 November 2011 by NUS Dnamazing (talk | contribs)
Jump to navigationJump to search

<html><head> <style type="text/css"> .main { margin: 0 auto; width: 804px;border-style:solid; border-width:5px; }


  1. logo{ margin:10px 0 0 20px; display:block; background:url('http://openwetware.org/images/5/57/Banner2.png') 0 0 no-repeat; width:800px; height:200px; text-indent:-9999px;}

.navbox { position: relative; float: left; }

  1. menu{ background:url('http://openwetware.org/images/3/3f/Menu_bg.png') 0 0 no-repeat; width:643px; height:100px; margin:51px 0 0 78px; padding-top:100px}
  1. menu li{ float:left;}
  2. menu a{ font-size:30px; color:#000000; line-height:1.2em; text-decoration:none; letter-spacing:-1px;}

.nav1{ padding:26px 0 0 37px;} .nav2{ padding:16px 0 0 30px;} .nav3{ padding:36px 0 0 17px;} .nav4{ padding:16px 0 0 19px;} .nav5{ padding:26px 0 0 30px;}

  1. menu .nav1 a:hover{ color:#bb0e0e}
  2. menu .nav2 a:hover{ color:#ca6509}
  3. menu .nav3 a:hover{ color:#3f9711}
  4. menu .nav4 a:hover{ color:#0ca0ce}
  5. menu .nav5 a:hover{ color:#8606c5}


</style> </head>



<div class="extra"> <div id="page_1"> <div class="main" style="padding-top:10px; padding-bottom:10px"> <!--header --> <header> <a href="index.html" id="logo">DNAmazing asfsaf. Smart. Effective</a> <nav> <ul id="menu"> <li class="nav1"><a href="http://openwetware.org/wiki/User:NUS_Dnamazing">Home</a></li> <li class="nav2"><a href="http://openwetware.org/wiki/DNAmazingMission">Mission</a></li> <li class="nav3"><a href="http://openwetware.org/wiki/DNAmazingProcess">Process</a></li> <li class="nav4"><a href="http://openwetware.org/wiki/DNAmazingResult">Results</a></li> <li class="nav5"><a href="http://openwetware.org/wiki/DNAmazingResources">Resources</a></li> </ul> </nav> </header> <!--header end-->


</div> </div>

</div> </html>

Inspiration

Figure 1. DNA motors operate on a simple 2D DNA platform
Figure 2. DNA motors operate with sticky ends

Since the first paper published by Paul W.K.Rothemund about DNA Origami in 2006, there have been intense efforts observed in the community of nanoscientists, chemists, and nanoengineers to push the field ahead. During only 5 years, DNA Origami has advanced from 2D to 3D nanostructures, from DNA Origami systems in relaxing state to systems intentionally in tension to create curves, from simple structures to sophisticate structures. DNA Origami is definitely one of most promising tools for nanoengineering today.

With its more than tenfold higher resolution than that of any previous techniques and its capability to create complex nanostructures from bottom up, we believe DNA Origami can be employed as the molds or platforms with connection sites at its sticky ends for other nano-devices and components. To illuminate, The rigidity of DNA Origami structures together with the stability of their sticky ends can be used to create the platforms on which DNA nanomachine can operate by hoping around sticky ends sites. We strongly believe that in the near future we may be able to construct nano-cities in which nano-motocycles go around and transport molecules to nano-factories. In fact, there have been few initial efforts to realize this vision from Seeman's group, Erik Winfree's group,Hao Yan's group and Pierce's group (Figure 1 and Figure 2).

DNA Origami has been proved to provide access to the synthesis of any desired shape. This ability strongly attracts scientists in the field of nanoengineering who are finding ways to fabricate complicated nanostructures for biomedical and nanoelectronic applications. The top-down approach is struggling with the problems of resolution and environmental issues; the bottom-up approach in colloid science is facing the problems of uniform sizes and kinetic as well as thermodynamic limitations. The emerging DNA Origami technique seems to be a new candidate to handle these difficulties.It has been reported some promising developments in the field of biomineralization which can transform peptide and DNA structures into metallic system. Toether with biomineralization, DNA Origami can be employed in the field of nanofrabrication. In the near future, a blueprint of a complicated nanocircuit will be fabricated in the form of DNA Origami structures which will be converted to the metallic circuit by biomineralization. This requires a new CAD program which is able to provide the users high level of complexity in the structures and "one-click" to the result to accelerate the processing time of design in industry.

The researching thrust in DNA Origami is no doubt turning to the applications of this technique from the fabrication of various shapes which has been well established; we believe complexity and the addition of stick ends will be the most important factors to advance the field in the future.

Motivation

As mentioend a bove

Objectives

Vision