Dahlquist:Yeast Cold Shock

From OpenWetWare

(Difference between revisions)
Jump to: navigation, search
(Zinc: added next paper)
(Zinc: added last article)
Line 112: Line 112:
# [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T20-4JRV952-1&_user=945462&_coverDate=07%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000048964&_version=1&_urlVersion=0&_userid=945462&md5=42a5a79e573746c275b91e89883ceac5&searchtype=a Eide DJ. (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 1763(7):711-722.]
# [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T20-4JRV952-1&_user=945462&_coverDate=07%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000048964&_version=1&_urlVersion=0&_userid=945462&md5=42a5a79e573746c275b91e89883ceac5&searchtype=a Eide DJ. (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 1763(7):711-722.]
# [http://genomebiology.com/content/6/9/R77 Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF. (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol. 6(9):R77.]
# [http://genomebiology.com/content/6/9/R77 Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF. (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol. 6(9):R77.]
-
 
+
# [http://jn.nutrition.org/cgi/pmidlookup?view=long&pmid=12730459 Eide DJ. (2003) J Nutr. Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. 133(5 Suppl 1):1532S-1535S.]
-
 
+
-
 
+
-
 
+
<!--
<!--
<biblio>
<biblio>
Line 128: Line 125:
</biblio>
</biblio>
-->
-->
-
 
* [[Media:Sc_ZincIonHomeostasis_kb3.zip | Zip file containing Sc_ZincIonHomeostasis.mapp]]
* [[Media:Sc_ZincIonHomeostasis_kb3.zip | Zip file containing Sc_ZincIonHomeostasis.mapp]]

Revision as of 13:31, 4 February 2011

Image:HeaderBlueBig.gif Home        Research        Protocols        Notebook        People        Publications        Courses        Contact       


Contents

Comparator Expression Datasets

Environmental Stress Response

Cold or Near-freezing

Sahara et al. 2002

  1. Sahara T, Goda T, and Ohgiya S. . pmid:12379644. PubMed HubMed [Paper1]
  • Full dataset here
    • Strain: YPH500 (MATα, ura3-52, lys2-801, ade2-101, trp1-Δ63, his3-Δ200, leu2-Δ1)
    • Media: YPD
    • Experimental Conditions
      • t0 is A600 = 2.0, 30°C, shaking 100 rpm
      • shift to 10°C, shaking 100 rpm, t15, t30, t120 (2 h), t240 (4 h), t480 (8 h)
    • Replicates: 2 independent replicates averaged
    • Reference sample: t0
    • Methods: 15 μg total RNA directly labeled, no dye-swap control except for t0-t0 self-hybe, cDNA microrray

Schade et al. 2004

  1. Schade B, Jansen G, Whiteway M, Entian KD, and Thomas DY. . pmid:15483057. PubMed HubMed [Paper2]
  • Partial dataset here; have complete dataset from author
    • Strains: BY4743 (Mata/Matα, wild type), BSY25 (BY4743, homozygous Δmsn2::kanMX ΔMSN4::kanMX met15)
    • Media: YPD
    • Experimental conditions
      • t0 is A600 = 0.6, 30°C, shaking 170 rpm, shift to 10°C, shaking 170 rpm, t10, t30, t120 (2 h)
      • t0 is A600 = 0.4, 30°C, shaking 170 rpm, shift to 10°C, shaking 170 rpm, t720 (12 h)
      • t0 is A600 = 0.1, 30°C, shaking 170 rpm, shift to 10°C, shaking 170 rpm, t3600 (60 h)
    • Replicates: t0 (2 rep), t10 (3 rep), t30 (3 rep), t120 (2 rep), t720 (2 rep), t3600 (3 rep)
    • Reference sample: not stated in paper, assumed to be t0, so the t0 arrays were self-self hybe?
    • Methods: 3 μg mRNA directly labeled, dye swap performed, "genomic" microarray, obtained from University Health Network (so likely cDNA)

Kandror et al. 2004

  • Kandror et al. 2004; dataset not available
    • Strains: "wild type", specific strain not stated
    • Media: YPGal
    • Experimental conditions
      • "mRNA samples from yeast growing at 30°C or 0°C for 24 hours were analyzed by whole-genome microarray hybridization"
      • Replicates: 2 independent replicates averaged
      • That's all the information provided in paper.

Murata et al. 2006

  • Murata et al. 2006; Some data available here
    • Strain: S288c (MATα SUC2 mal mel gal2 CUP1)
    • Media: YPD
    • Experimental conditions
      • t0 is A660 = 0.5, 25°C, shaking 120-130 rpm, shift to 4°C, shaking 120-130 rpm, t360 (6 h), t720 (12 h), t1440 (24 h), t2880 (48 h)
      • Replicates: 5 independent cultures
      • Reference sample: A660 = 1.0 (25°C?)
    • Methods: 1-2 μg mRNA directly labeled, cDNA microarray, no dye swap
  • Tai et al. 2007
  1. Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, and Daran JM. . pmid:17928405. PubMed HubMed [Paper1]
  • Strain: CEN.PK113-7D (MATa)
    • Media: defined synthetic medium limited by carbon or nitrogen with all other growth requirements in excess
    • Experimental conditions
      • dilution rate of 0.03 h-1, stirrer 600 rpm
      • Carbon-limiting at 12°C or 30°C; nitrogen limited at 12°C or 30°C; all were anaerobic; steady-state growth
      • Replicates: 3 independent replicates for each condition
      • Reference sample: none because Affymetrix chips
    • Methods: Affymetrix methods

Beltran et al. 2006

Pizarro et al. 2008

  1. Gunji W, Kai T, Takahashi Y, Maki Y, Kurihara W, Utsugi T, Fujimori F, and Murakami Y. . pmid:15368892. PubMed HubMed [Paper1]

Becerra et al. 2003

  1. Becerra M, Lombardía LJ, González-Siso MI, Rodríguez-Belmonte E, Hauser NC, and Cerdán ME. . pmid:18629074. PubMed HubMed [Paper1]

Regulatory Networks

  1. Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, Philippakis AA, Hu Y, De Masi F, Pacek M, Rolfs A, Murthy T, Labaer J, and Bulyk ML. . pmid:19158363. PubMed HubMed [Paper1]

Other

  • Check with online compendia, Hughes and Princeton

Zinc

  1. De Nicola R, Hazelwood LA, De Hulster EA, Walsh MC, Knijnenburg TA, Reinders MJ, Walker GM, Pronk JT, Daran JM, Daran-Lapujade P. (2007) Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.Appl Environ Microbiol. 73(23):7680-7692.
  2. Rutherford JC, Bird AJ. (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell. 3(1):1-13.
  3. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. (2008) A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell. 19(7):3028-3039.
  4. Wu CY, Bird AJ, Chung LM, Newton MA, Winge DR, Eide DJ. (2008) Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics. 9:370.
  5. Eide DJ. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem. 284(28):18565-18569.
  6. Eide DJ. (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 1763(7):711-722.
  7. Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF. (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol. 6(9):R77.
  8. Eide DJ. (2003) J Nutr. Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. 133(5 Suppl 1):1532S-1535S.

Ribosome Biogenesis Pathway

  1. Fatica A and Tollervey D. . pmid:12067653. PubMed HubMed [Paper1]
  2. Li Z, Lee I, Moradi E, Hung NJ, Johnson AW, and Marcotte EM. . pmid:19806183. PubMed HubMed [Paper2]
  3. Wade CH, Umbarger MA, and McAlear MA. . pmid:16544271. PubMed HubMed [Paper3]
All Medline abstracts: PubMed HubMed

Genetic Screens

  1. Ando A, Nakamura T, Murata Y, Takagi H, and Shima J. . pmid:16989656. PubMed HubMed [Paper1]
  2. Abe F and Minegishi H. . pmid:18245339. PubMed HubMed [Paper2]
All Medline abstracts: PubMed HubMed
Personal tools