Dahlquist:Yeast Cold Shock

From OpenWetWare
Revision as of 11:29, 4 February 2011 by Kam D. Dahlquist (talk | contribs) (→‎Zinc: added next paper)
Jump to navigationJump to search

Home        Research        Protocols        Notebook        People        Publications        Courses        Contact       


Comparator Expression Datasets

Environmental Stress Response

Cold or Near-freezing

Sahara et al. 2002

  1. Sahara T, Goda T, and Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem. 2002 Dec 20;277(51):50015-21. DOI:10.1074/jbc.M209258200 | PubMed ID:12379644 | HubMed [Paper1]
  • Full dataset here
    • Strain: YPH500 (MATα, ura3-52, lys2-801, ade2-101, trp1-Δ63, his3-Δ200, leu2-Δ1)
    • Media: YPD
    • Experimental Conditions
      • t0 is A600 = 2.0, 30°C, shaking 100 rpm
      • shift to 10°C, shaking 100 rpm, t15, t30, t120 (2 h), t240 (4 h), t480 (8 h)
    • Replicates: 2 independent replicates averaged
    • Reference sample: t0
    • Methods: 15 μg total RNA directly labeled, no dye-swap control except for t0-t0 self-hybe, cDNA microrray

Schade et al. 2004

  1. Schade B, Jansen G, Whiteway M, Entian KD, and Thomas DY. Cold adaptation in budding yeast. Mol Biol Cell. 2004 Dec;15(12):5492-502. DOI:10.1091/mbc.e04-03-0167 | PubMed ID:15483057 | HubMed [Paper2]
  • Partial dataset here; have complete dataset from author
    • Strains: BY4743 (Mata/Matα, wild type), BSY25 (BY4743, homozygous Δmsn2::kanMX ΔMSN4::kanMX met15)
    • Media: YPD
    • Experimental conditions
      • t0 is A600 = 0.6, 30°C, shaking 170 rpm, shift to 10°C, shaking 170 rpm, t10, t30, t120 (2 h)
      • t0 is A600 = 0.4, 30°C, shaking 170 rpm, shift to 10°C, shaking 170 rpm, t720 (12 h)
      • t0 is A600 = 0.1, 30°C, shaking 170 rpm, shift to 10°C, shaking 170 rpm, t3600 (60 h)
    • Replicates: t0 (2 rep), t10 (3 rep), t30 (3 rep), t120 (2 rep), t720 (2 rep), t3600 (3 rep)
    • Reference sample: not stated in paper, assumed to be t0, so the t0 arrays were self-self hybe?
    • Methods: 3 μg mRNA directly labeled, dye swap performed, "genomic" microarray, obtained from University Health Network (so likely cDNA)

Kandror et al. 2004

  • Kandror et al. 2004; dataset not available
    • Strains: "wild type", specific strain not stated
    • Media: YPGal
    • Experimental conditions
      • "mRNA samples from yeast growing at 30°C or 0°C for 24 hours were analyzed by whole-genome microarray hybridization"
      • Replicates: 2 independent replicates averaged
      • That's all the information provided in paper.

Murata et al. 2006

  • Murata et al. 2006; Some data available here
    • Strain: S288c (MATα SUC2 mal mel gal2 CUP1)
    • Media: YPD
    • Experimental conditions
      • t0 is A660 = 0.5, 25°C, shaking 120-130 rpm, shift to 4°C, shaking 120-130 rpm, t360 (6 h), t720 (12 h), t1440 (24 h), t2880 (48 h)
      • Replicates: 5 independent cultures
      • Reference sample: A660 = 1.0 (25°C?)
    • Methods: 1-2 μg mRNA directly labeled, cDNA microarray, no dye swap
  • Tai et al. 2007
  1. Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, and Daran JM. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell. 2007 Dec;18(12):5100-12. DOI:10.1091/mbc.e07-02-0131 | PubMed ID:17928405 | HubMed [Paper1]
  • Strain: CEN.PK113-7D (MATa)
    • Media: defined synthetic medium limited by carbon or nitrogen with all other growth requirements in excess
    • Experimental conditions
      • dilution rate of 0.03 h-1, stirrer 600 rpm
      • Carbon-limiting at 12°C or 30°C; nitrogen limited at 12°C or 30°C; all were anaerobic; steady-state growth
      • Replicates: 3 independent replicates for each condition
      • Reference sample: none because Affymetrix chips
    • Methods: Affymetrix methods

Beltran et al. 2006

Pizarro et al. 2008

  1. Gunji W, Kai T, Takahashi Y, Maki Y, Kurihara W, Utsugi T, Fujimori F, and Murakami Y. Global analysis of the regulatory network structure of gene expression in Saccharomyces cerevisiae. DNA Res. 2004 Jun 30;11(3):163-77. DOI:10.1093/dnares/11.3.163 | PubMed ID:15368892 | HubMed [Paper1]

Becerra et al. 2003

  1. Becerra M, Lombardía LJ, González-Siso MI, Rodríguez-Belmonte E, Hauser NC, and Cerdán ME. Genome-wide analysis of the yeast transcriptome upon heat and cold shock. Comp Funct Genomics. 2003;4(4):366-75. DOI:10.1002/cfg.301 | PubMed ID:18629074 | HubMed [Paper1]

Regulatory Networks

  1. Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, Philippakis AA, Hu Y, De Masi F, Pacek M, Rolfs A, Murthy T, Labaer J, and Bulyk ML. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 2009 Apr;19(4):556-66. DOI:10.1101/gr.090233.108 | PubMed ID:19158363 | HubMed [Paper1]

Other

  • Check with online compendia, Hughes and Princeton

Zinc

  1. De Nicola R, Hazelwood LA, De Hulster EA, Walsh MC, Knijnenburg TA, Reinders MJ, Walker GM, Pronk JT, Daran JM, Daran-Lapujade P. (2007) Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.Appl Environ Microbiol. 73(23):7680-7692.
  2. Rutherford JC, Bird AJ. (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell. 3(1):1-13.
  3. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. (2008) A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell. 19(7):3028-3039.
  4. Wu CY, Bird AJ, Chung LM, Newton MA, Winge DR, Eide DJ. (2008) Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics. 9:370.
  5. Eide DJ. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem. 284(28):18565-18569.
  6. Eide DJ. (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 1763(7):711-722.






Ribosome Biogenesis Pathway

  1. Fatica A and Tollervey D. Making ribosomes. Curr Opin Cell Biol. 2002 Jun;14(3):313-8. DOI:10.1016/s0955-0674(02)00336-8 | PubMed ID:12067653 | HubMed [Paper1]
  2. Li Z, Lee I, Moradi E, Hung NJ, Johnson AW, and Marcotte EM. Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol. 2009 Oct;7(10):e1000213. DOI:10.1371/journal.pbio.1000213 | PubMed ID:19806183 | HubMed [Paper2]
  3. Wade CH, Umbarger MA, and McAlear MA. The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast. 2006 Mar;23(4):293-306. DOI:10.1002/yea.1353 | PubMed ID:16544271 | HubMed [Paper3]

All Medline abstracts: PubMed | HubMed

Genetic Screens

  1. Ando A, Nakamura T, Murata Y, Takagi H, and Shima J. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res. 2007 Mar;7(2):244-53. DOI:10.1111/j.1567-1364.2006.00162.x | PubMed ID:16989656 | HubMed [Paper1]
  2. Abe F and Minegishi H. Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics. 2008 Feb;178(2):851-72. DOI:10.1534/genetics.107.083063 | PubMed ID:18245339 | HubMed [Paper2]

All Medline abstracts: PubMed | HubMed