Dionne: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 8: Line 8:
We are interested in (1) metabolic-immune interaction and its effects on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. ''Drosophila melanogaster'' is our animal model of choice.
We are interested in (1) metabolic-immune interaction and its effects on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. ''Drosophila melanogaster'' is our animal model of choice.


Work in the lab has been funded by [http://www.bbsrc.ac.uk the Biotechnology and Biological Sciences Research Council] and [http://www.wellcome.ac.uk the Wellcome Trust].
Work in the lab has been funded by [http://www.bbsrc.ac.uk the Biotechnology and Biological Sciences Research Council], [http://www.wellcome.ac.uk the Wellcome Trust], and [http://www.mrc.ac.uk the Medical Research Council].


==Metabolic-immune interaction and host genetics in infection==
==Metabolic-immune interaction and host genetics in infection==


It has been known for centuries that chronic infections cause systemic metabolic disruption, but it is fundamentally unclear why and how these events are linked. Does metabolic disruption somehow favor the host response to infection? If so, how? We address these fundamental biological questions by analyzing pathogenic infections and their consequences in the fruit-fly ''Drosophila melanogaster''. We use classical ''Drosophila'' genetics, computational analysis and modeling of gene expression, biochemistry, and intravital microscopy to probe the metabolic-immune interface.
It has been known for centuries that chronic infections cause systemic metabolic disruption, but it is fundamentally unclear why and how these events are linked. Does metabolic disruption somehow facilitate the host response to infection? If so, how? We address these fundamental biological questions by analyzing pathogenic infections and their consequences in the fruit-fly ''Drosophila melanogaster''. We use classical ''Drosophila'' genetics, computational analysis and modeling of gene expression, biochemistry, and intravital microscopy to probe the metabolic-immune interface.


One pathogen of particular interest to us is ''Mycobacterium marinum''. We have previously shown that flies infected with ''M. marinum'' exhibit progressive loss of metabolic stores accompanied by mild hyperglycemia. We have shown that these effects are caused, in part, by systemic disruption of signaling via the anabolic effector kinases Akt and p70 S6 kinase. The transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. It appears that the disruption of anabolic kinase activity may be required to permit MEF2 to drive the antibacterial response. [http://www.cell.com/abstract/S0092-8674(13)01144-6 This work has recently been published in ''Cell''.]
One pathogen of particular interest to us is ''Mycobacterium marinum''. We have previously shown that flies infected with ''M. marinum'' exhibit progressive loss of metabolic stores accompanied by mild hyperglycemia. We have shown that these effects are caused, in part, by systemic disruption of signaling via the anabolic effector kinases Akt and p70 S6 kinase. The transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. It appears that the disruption of anabolic kinase activity may be required to permit MEF2 to drive the antibacterial response. [http://www.cell.com/abstract/S0092-8674(13)01144-6 This work has recently been published in ''Cell''.]

Revision as of 09:37, 27 March 2014

About Us       Protocols &c.       Lab Members       Publications       Contact       Links


Welcome to the Dionne lab!

That is to say, Marc Dionne's lab, at King's College London; not to be confused with any other Dionne lab.

We are interested in (1) metabolic-immune interaction and its effects on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. Drosophila melanogaster is our animal model of choice.

Work in the lab has been funded by the Biotechnology and Biological Sciences Research Council, the Wellcome Trust, and the Medical Research Council.

Metabolic-immune interaction and host genetics in infection

It has been known for centuries that chronic infections cause systemic metabolic disruption, but it is fundamentally unclear why and how these events are linked. Does metabolic disruption somehow facilitate the host response to infection? If so, how? We address these fundamental biological questions by analyzing pathogenic infections and their consequences in the fruit-fly Drosophila melanogaster. We use classical Drosophila genetics, computational analysis and modeling of gene expression, biochemistry, and intravital microscopy to probe the metabolic-immune interface.

One pathogen of particular interest to us is Mycobacterium marinum. We have previously shown that flies infected with M. marinum exhibit progressive loss of metabolic stores accompanied by mild hyperglycemia. We have shown that these effects are caused, in part, by systemic disruption of signaling via the anabolic effector kinases Akt and p70 S6 kinase. The transcription factor MEF2 responds to nutrient signals to regulate expression of both immune effectors and anabolic enzymes. Remarkably, though MEF2 promotes the expression of both groups of genes, its choice of targets is regulated by a conserved phosphorylation that alters its affinity for the TATA binding protein. It appears that the disruption of anabolic kinase activity may be required to permit MEF2 to drive the antibacterial response. This work has recently been published in Cell.

Ongoing work continues to explore other metabolic inputs into MEF2, other targets of MEF2 in its two discrete physiological states, and the pathways by which infection disrupts anabolic kinase activity.

Cytokines and cytokine signalling

In the course of screening for mutants with defective responses to M. marinum, we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. Cytokines regulate the realized immune response of the fly, much as they do in mammals; they also can be significant direct drivers of pathology due to effects on immune and nonimmune target tissues. However, very little is known about the biology of cytokines in Drosophila melanogaster, especially in the context of bacterial infections.

Some time back, we showed that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. Check it out! More recently, we have been analyzing the role of an interleukin-like signal in Mycobacterium marinum infection - we hope to be able to say more about this soon.

Positions available

A funded postdoctoral position is currently available. More generally, we are always interested in hearing from potential graduate students and post-docs. If you are interested in our work, get in touch!

<wikionly>

Recent updates to the lab wiki

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

16 April 2024

     10:20  Yarn Microfluidics - Roger Dirth‎‎ 12 changes history +442 [Rcostello‎ (12×)]
     
10:20 (cur | prev) +41 Rcostello talk contribs (→‎Applications)
     
10:19 (cur | prev) +36 Rcostello talk contribs (→‎Applications)
     
10:18 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Fabrication)
     
10:17 (cur | prev) +38 Rcostello talk contribs (→‎Washburn Equation)
     
10:16 (cur | prev) +38 Rcostello talk contribs (→‎Wicking Rate)
     
10:16 (cur | prev) +37 Rcostello talk contribs (→‎Introduction)
     
10:15 (cur | prev) +36 Rcostello talk contribs (→‎Wicking Rate)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Fabrication)
     
10:14 (cur | prev) +34 Rcostello talk contribs (→‎Applications)
     
10:14 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     
10:13 (cur | prev) +36 Rcostello talk contribs (→‎Introduction)
     08:18  3D Printed Microfluidic Robots - Helen Hua‎‎ 2 changes history +6 [Michele Caggioni‎ (2×)]
     
08:18 (cur | prev) +22 Michele Caggioni talk contribs (→‎Actuation)
     
08:18 (cur | prev) −16 Michele Caggioni talk contribs (→‎Actuation)
     08:11  3D Printing Overview diffhist +422 Michele Caggioni talk contribs

15 April 2024

     23:43  User:Yanbin Huang‎‎ 2 changes history +170 [Yanbin Huang‎ (2×)]
     
23:43 (cur | prev) 0 Yanbin Huang talk contribs (→‎Granted Patents)
     
23:43 (cur | prev) +170 Yanbin Huang talk contribs (→‎Granted Patents)
     22:11  The paper that launched microfluidics - Xi Ning‎‎ 14 changes history +9,705 [Xning098‎ (14×)]
     
22:11 (cur | prev) −6 Xning098 talk contribs (→‎Summary)
     
22:07 (cur | prev) −12 Xning098 talk contribs (→‎Synthesis)
     
22:06 (cur | prev) 0 Xning098 talk contribs
     
22:06 (cur | prev) +1 Xning098 talk contribs
     
22:05 (cur | prev) 0 Xning098 talk contribs
     
22:03 (cur | prev) +630 Xning098 talk contribs
     
22:01 (cur | prev) +3,189 Xning098 talk contribs
     
21:44 (cur | prev) +688 Xning098 talk contribs (→‎Separation and quantification)
     
21:33 (cur | prev) +306 Xning098 talk contribs
     
21:29 (cur | prev) −2 Xning098 talk contribs (→‎Electrokinetic effect)
     
21:28 (cur | prev) −1 Xning098 talk contribs (→‎Separation and quantification)
     
21:27 (cur | prev) +398 Xning098 talk contribs (→‎Separation and quantification)
     
21:24 (cur | prev) +2,812 Xning098 talk contribs
     
21:06 (cur | prev) +1,702 Xning098 talk contribs
     21:45  (Upload log) [Xning098‎ (4×)]
     
21:45 Xning098 talk contribs uploaded File:Figure 4 Tdesign.png
     
21:30 Xning098 talk contribs uploaded File:Figure 3 Set-up3.png
     
21:24 Xning098 talk contribs uploaded File:Figure 2 Set-up1.png
     
21:09 Xning098 talk contribs uploaded File:Figure 1 electroosmotic flow.png
     18:16  Multilayer Paper Microfluidics - Madyson Redder‎‎ 15 changes history +4,948 [Mredder‎ (15×)]
     
18:16 (cur | prev) +540 Mredder talk contribs (→‎Fabrication Methods)
     
18:07 (cur | prev) +822 Mredder talk contribs (→‎Fabrication Methods)
     
17:58 (cur | prev) +1,223 Mredder talk contribs (→‎Fabrication Methods)
     
17:47 (cur | prev) −47 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)
     
17:46 (cur | prev) +2 Mredder talk contribs (→‎Advantages)
     
17:46 (cur | prev) +1,094 Mredder talk contribs (→‎Advantages)
     
17:37 (cur | prev) +24 Mredder talk contribs (→‎Materials)
     
17:37 (cur | prev) +619 Mredder talk contribs (→‎Materials)
     
17:19 (cur | prev) +18 Mredder talk contribs (→‎Uses)
     
17:19 (cur | prev) +7 Mredder talk contribs (→‎Uses)
     
17:18 (cur | prev) −19 Mredder talk contribs (→‎Developing Countries and Travel)
     
17:18 (cur | prev) +15 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) 0 Mredder talk contribs (→‎Uses)
     
17:16 (cur | prev) +1,103 Mredder talk contribs (→‎Uses)
     
17:14 (cur | prev) −453 Mredder talk contribs (→‎Motivation for Multilayer Paperfluidics)

</wikionly>

<nonwikionly> This page was created using Open Wetware.</nonwikionly>